| [66cfc7] | 1 | /*
 | 
|---|
 | 2 |  * FunctionApproximation.hpp
 | 
|---|
 | 3 |  *
 | 
|---|
 | 4 |  *  Created on: 02.10.2012
 | 
|---|
 | 5 |  *      Author: heber
 | 
|---|
 | 6 |  */
 | 
|---|
 | 7 | 
 | 
|---|
 | 8 | #ifndef FUNCTIONAPPROXIMATION_HPP_
 | 
|---|
 | 9 | #define FUNCTIONAPPROXIMATION_HPP_
 | 
|---|
 | 10 | 
 | 
|---|
 | 11 | // include config.h
 | 
|---|
 | 12 | #ifdef HAVE_CONFIG_H
 | 
|---|
 | 13 | #include <config.h>
 | 
|---|
 | 14 | #endif
 | 
|---|
 | 15 | 
 | 
|---|
 | 16 | #include <vector>
 | 
|---|
 | 17 | 
 | 
|---|
 | 18 | #include "FunctionApproximation/FunctionModel.hpp"
 | 
|---|
 | 19 | 
 | 
|---|
| [69ab84] | 20 | class TrainingData;
 | 
|---|
 | 21 | 
 | 
|---|
| [66cfc7] | 22 | /** This class encapsulates the solution to approximating a high-dimensional
 | 
|---|
 | 23 |  * function represented by two vectors of tuples, being input variables and
 | 
|---|
 | 24 |  * output of the function via a model function, manipulated by a set of
 | 
|---|
 | 25 |  * parameters.
 | 
|---|
 | 26 |  *
 | 
|---|
 | 27 |  * \note For this reason the input and output dimension has to be given in
 | 
|---|
 | 28 |  * the constructor since these are fixed parameters to the problem as a
 | 
|---|
 | 29 |  * whole and usually: a different input dimension means we have a completely
 | 
|---|
 | 30 |  * different problem (and hence we may as well construct and new instance of
 | 
|---|
 | 31 |  * this class).
 | 
|---|
 | 32 |  *
 | 
|---|
 | 33 |  * The "training data", i.e. the two sets of input and output values, is
 | 
|---|
 | 34 |  * given extra.
 | 
|---|
 | 35 |  *
 | 
|---|
 | 36 |  * The problem is then that a given high-dimensional function is supplied,
 | 
|---|
 | 37 |  * the "model", and we have to fit this function via its set of variable
 | 
|---|
 | 38 |  * parameters. This fitting procedure is executed via a Levenberg-Marquardt
 | 
|---|
 | 39 |  * algorithm as implemented in the
 | 
|---|
 | 40 |  * <a href="http://www.ics.forth.gr/~lourakis/levmar/index.html">LevMar</a>
 | 
|---|
 | 41 |  * package.
 | 
|---|
 | 42 |  *
 | 
|---|
| [1ba8a1] | 43 |  * \section FunctionApproximation-details Details on the inner workings.
 | 
|---|
 | 44 |  *
 | 
|---|
 | 45 |  *  FunctionApproximation::operator() is the main function that performs the
 | 
|---|
 | 46 |  *  non-linear regression. It consists of the following steps:
 | 
|---|
 | 47 |  *  -# hand given (initial) parameters over to model.
 | 
|---|
 | 48 |  *  -# convert output vector to format suitable to levmar
 | 
|---|
 | 49 |  *  -# allocate memory for levmar to work in
 | 
|---|
 | 50 |  *  -# depending on whether the model is constrained or not and whether we
 | 
|---|
 | 51 |  *   have a derivative, we make use of various levmar functions with prepared
 | 
|---|
 | 52 |  *   parameters.
 | 
|---|
 | 53 |  *  -# memory is free'd and some final infos is given.
 | 
|---|
 | 54 |  *
 | 
|---|
 | 55 |  *  levmar needs to evaluate the model. To this end, FunctionApproximation has
 | 
|---|
 | 56 |  *  two functions whose signatures is such as to match with the one required
 | 
|---|
 | 57 |  *  by the levmar package. Hence,
 | 
|---|
 | 58 |  *  -# FunctionApproximation::LevMarCallback()
 | 
|---|
 | 59 |  *  -# FunctionApproximation::LevMarDerivativeCallback()
 | 
|---|
 | 60 |  *  are used as callbacks by levmar only.
 | 
|---|
 | 61 |  *  These hand over the current set of parameters to the model, then both bind
 | 
|---|
 | 62 |  *  FunctionApproximation::evaluate() and
 | 
|---|
 | 63 |  *  FunctionApproximation::evaluateDerivative(), respectively, and execute
 | 
|---|
 | 64 |  *  FunctionModel::operator() or FunctionModel::parameter_derivative(),
 | 
|---|
 | 65 |  *  respectively.
 | 
|---|
 | 66 |  *
 | 
|---|
| [66cfc7] | 67 |  */
 | 
|---|
 | 68 | class FunctionApproximation
 | 
|---|
 | 69 | {
 | 
|---|
 | 70 | public:
 | 
|---|
 | 71 |   //!> typedef for a vector of input arguments
 | 
|---|
 | 72 |   typedef std::vector<FunctionModel::arguments_t> inputs_t;
 | 
|---|
| [e1fe7e] | 73 |   //!> typedef for a vector of input arguments
 | 
|---|
 | 74 |   typedef std::vector<FunctionModel::list_of_arguments_t> filtered_inputs_t;
 | 
|---|
| [66cfc7] | 75 |   //!> typedef for a vector of output values
 | 
|---|
 | 76 |   typedef std::vector<FunctionModel::results_t> outputs_t;
 | 
|---|
 | 77 | public:
 | 
|---|
| [69ab84] | 78 |   /** Constructor of the class FunctionApproximation.
 | 
|---|
 | 79 |    *
 | 
|---|
 | 80 |    * \param _data container with tuple of (input, output) values
 | 
|---|
 | 81 |    * \param _model FunctionModel to use in approximation
 | 
|---|
 | 82 |    */
 | 
|---|
 | 83 |   FunctionApproximation(
 | 
|---|
 | 84 |       const TrainingData &_data,
 | 
|---|
 | 85 |       FunctionModel &_model);
 | 
|---|
 | 86 | 
 | 
|---|
| [66cfc7] | 87 |   /** Constructor of the class FunctionApproximation.
 | 
|---|
 | 88 |    *
 | 
|---|
 | 89 |    * \param _input_dimension input dimension for this function approximation
 | 
|---|
 | 90 |    * \param _output_dimension output dimension for this function approximation
 | 
|---|
| [69ab84] | 91 |    * \param _model FunctionModel to use in approximation
 | 
|---|
| [66cfc7] | 92 |    */
 | 
|---|
 | 93 |   FunctionApproximation(
 | 
|---|
 | 94 |       const size_t &_input_dimension,
 | 
|---|
 | 95 |       const size_t &_output_dimension,
 | 
|---|
 | 96 |       FunctionModel &_model) :
 | 
|---|
 | 97 |     input_dimension(_input_dimension),
 | 
|---|
 | 98 |     output_dimension(_output_dimension),
 | 
|---|
 | 99 |     model(_model)
 | 
|---|
 | 100 |   {}
 | 
|---|
 | 101 |   /** Destructor for class FunctionApproximation.
 | 
|---|
 | 102 |    *
 | 
|---|
 | 103 |    */
 | 
|---|
 | 104 |   ~FunctionApproximation()
 | 
|---|
 | 105 |   {}
 | 
|---|
 | 106 | 
 | 
|---|
 | 107 |   /** Setter for the training data to be used.
 | 
|---|
 | 108 |    *
 | 
|---|
 | 109 |    * \param input vector of input tuples, needs to be of
 | 
|---|
 | 110 |    *        FunctionApproximation::input_dimension size
 | 
|---|
 | 111 |    * \param output vector of output tuples, needs to be of
 | 
|---|
 | 112 |    *        FunctionApproximation::output_dimension size
 | 
|---|
 | 113 |    */
 | 
|---|
| [e1fe7e] | 114 |   void setTrainingData(const filtered_inputs_t &input, const outputs_t &output);
 | 
|---|
| [66cfc7] | 115 | 
 | 
|---|
 | 116 |   /** Setter for the model function to be used in the approximation.
 | 
|---|
 | 117 |    *
 | 
|---|
 | 118 |    */
 | 
|---|
 | 119 |   void setModelFunction(FunctionModel &_model);
 | 
|---|
 | 120 | 
 | 
|---|
| [76e63d] | 121 |   /** This enum steers whether we use finite differences or
 | 
|---|
 | 122 |    * FunctionModel::parameter_derivative to calculate the jacobian.
 | 
|---|
 | 123 |    *
 | 
|---|
 | 124 |    */
 | 
|---|
 | 125 |   enum JacobianMode {
 | 
|---|
 | 126 |     FiniteDifferences,
 | 
|---|
 | 127 |     ParameterDerivative,
 | 
|---|
 | 128 |     MAXMODE
 | 
|---|
 | 129 |   };
 | 
|---|
 | 130 | 
 | 
|---|
| [66cfc7] | 131 |   /** This starts the fitting process, resulting in the parameters to
 | 
|---|
 | 132 |    * the model function being optimized with respect to the given training
 | 
|---|
 | 133 |    * data.
 | 
|---|
| [76e63d] | 134 |    *
 | 
|---|
 | 135 |    * \param mode whether to use finite differences or the parameter derivative
 | 
|---|
 | 136 |    *        in calculating the jacobian
 | 
|---|
| [66cfc7] | 137 |    */
 | 
|---|
| [76e63d] | 138 |   void operator()(const enum JacobianMode mode = FiniteDifferences);
 | 
|---|
| [66cfc7] | 139 | 
 | 
|---|
 | 140 |   /** Evaluates the model function for each pair of training tuple and returns
 | 
|---|
| [5b5724] | 141 |    * the output of the function as a vector.
 | 
|---|
| [66cfc7] | 142 |    *
 | 
|---|
 | 143 |    * This function as a signature compatible to the one required by the
 | 
|---|
 | 144 |    * LevMar package (with double precision).
 | 
|---|
 | 145 |    *
 | 
|---|
 | 146 |    * \param *p array of parameters for the model function of dimension \a m
 | 
|---|
 | 147 |    * \param *x array of result values of dimension \a n
 | 
|---|
 | 148 |    * \param m parameter dimension
 | 
|---|
 | 149 |    * \param n output dimension
 | 
|---|
 | 150 |    * \param *data additional data, unused here
 | 
|---|
 | 151 |    */
 | 
|---|
 | 152 |   void evaluate(double *p, double *x, int m, int n, void *data);
 | 
|---|
 | 153 | 
 | 
|---|
| [5b5724] | 154 |   /** Evaluates the parameter derivative of the model function for each pair of
 | 
|---|
 | 155 |    * training tuple and returns the output of the function as vector.
 | 
|---|
 | 156 |    *
 | 
|---|
 | 157 |    * This function as a signature compatible to the one required by the
 | 
|---|
 | 158 |    * LevMar package (with double precision).
 | 
|---|
 | 159 |    *
 | 
|---|
 | 160 |    * \param *p array of parameters for the model function of dimension \a m
 | 
|---|
 | 161 |    * \param *jac on output jacobian matrix of result values of dimension \a n times \a m
 | 
|---|
 | 162 |    * \param m parameter dimension
 | 
|---|
 | 163 |    * \param n output dimension times parameter dimension
 | 
|---|
 | 164 |    * \param *data additional data, unused here
 | 
|---|
 | 165 |    */
 | 
|---|
 | 166 |   void evaluateDerivative(double *p, double *jac, int m, int n, void *data);
 | 
|---|
 | 167 | 
 | 
|---|
| [371c8b] | 168 |   /** This functions checks whether the parameter derivative of the FunctionModel
 | 
|---|
 | 169 |    * has been correctly implemented by validating against finite differences.
 | 
|---|
 | 170 |    *
 | 
|---|
 | 171 |    * We use LevMar's dlevmar_chkjac() function.
 | 
|---|
 | 172 |    *
 | 
|---|
 | 173 |    * \return true - gradients are ok (>0.5), false - else
 | 
|---|
 | 174 |    */
 | 
|---|
 | 175 |   bool checkParameterDerivatives();
 | 
|---|
 | 176 | 
 | 
|---|
| [66cfc7] | 177 | private:
 | 
|---|
 | 178 |   static void LevMarCallback(double *p, double *x, int m, int n, void *data);
 | 
|---|
 | 179 | 
 | 
|---|
| [5b5724] | 180 |   static void LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data);
 | 
|---|
 | 181 | 
 | 
|---|
 | 182 |   void prepareModel(double *p, int m);
 | 
|---|
 | 183 | 
 | 
|---|
| [63b9f7] | 184 |   void prepareParameters(double *&p, int &m) const;
 | 
|---|
 | 185 | 
 | 
|---|
 | 186 |   void prepareOutput(double *&x, int &n) const;
 | 
|---|
 | 187 | 
 | 
|---|
| [66cfc7] | 188 | private:
 | 
|---|
 | 189 |   //!> input dimension (is fixed from construction)
 | 
|---|
 | 190 |   const size_t input_dimension;
 | 
|---|
 | 191 |   //!> output dimension (is fixed from construction)
 | 
|---|
 | 192 |   const size_t output_dimension;
 | 
|---|
 | 193 | 
 | 
|---|
 | 194 |   //!> current input set of training data
 | 
|---|
| [e1fe7e] | 195 |   filtered_inputs_t input_data;
 | 
|---|
| [66cfc7] | 196 |   //!> current output set of training data
 | 
|---|
 | 197 |   outputs_t output_data;
 | 
|---|
 | 198 | 
 | 
|---|
 | 199 |   //!> the model function to be used in the high-dimensional approximation
 | 
|---|
 | 200 |   FunctionModel &model;
 | 
|---|
 | 201 | };
 | 
|---|
 | 202 | 
 | 
|---|
 | 203 | #endif /* FUNCTIONAPPROXIMATION_HPP_ */
 | 
|---|