| [66cfc7] | 1 | /* | 
|---|
|  | 2 | * FunctionApproximation.hpp | 
|---|
|  | 3 | * | 
|---|
|  | 4 | *  Created on: 02.10.2012 | 
|---|
|  | 5 | *      Author: heber | 
|---|
|  | 6 | */ | 
|---|
|  | 7 |  | 
|---|
|  | 8 | #ifndef FUNCTIONAPPROXIMATION_HPP_ | 
|---|
|  | 9 | #define FUNCTIONAPPROXIMATION_HPP_ | 
|---|
|  | 10 |  | 
|---|
|  | 11 | // include config.h | 
|---|
|  | 12 | #ifdef HAVE_CONFIG_H | 
|---|
|  | 13 | #include <config.h> | 
|---|
|  | 14 | #endif | 
|---|
|  | 15 |  | 
|---|
|  | 16 | #include <vector> | 
|---|
|  | 17 |  | 
|---|
|  | 18 | #include "FunctionApproximation/FunctionModel.hpp" | 
|---|
|  | 19 |  | 
|---|
| [69ab84] | 20 | class TrainingData; | 
|---|
|  | 21 |  | 
|---|
| [66cfc7] | 22 | /** This class encapsulates the solution to approximating a high-dimensional | 
|---|
|  | 23 | * function represented by two vectors of tuples, being input variables and | 
|---|
|  | 24 | * output of the function via a model function, manipulated by a set of | 
|---|
|  | 25 | * parameters. | 
|---|
|  | 26 | * | 
|---|
|  | 27 | * \note For this reason the input and output dimension has to be given in | 
|---|
|  | 28 | * the constructor since these are fixed parameters to the problem as a | 
|---|
|  | 29 | * whole and usually: a different input dimension means we have a completely | 
|---|
|  | 30 | * different problem (and hence we may as well construct and new instance of | 
|---|
|  | 31 | * this class). | 
|---|
|  | 32 | * | 
|---|
|  | 33 | * The "training data", i.e. the two sets of input and output values, is | 
|---|
|  | 34 | * given extra. | 
|---|
|  | 35 | * | 
|---|
|  | 36 | * The problem is then that a given high-dimensional function is supplied, | 
|---|
|  | 37 | * the "model", and we have to fit this function via its set of variable | 
|---|
|  | 38 | * parameters. This fitting procedure is executed via a Levenberg-Marquardt | 
|---|
|  | 39 | * algorithm as implemented in the | 
|---|
|  | 40 | * <a href="http://www.ics.forth.gr/~lourakis/levmar/index.html">LevMar</a> | 
|---|
|  | 41 | * package. | 
|---|
|  | 42 | * | 
|---|
| [1ba8a1] | 43 | * \section FunctionApproximation-details Details on the inner workings. | 
|---|
|  | 44 | * | 
|---|
|  | 45 | *  FunctionApproximation::operator() is the main function that performs the | 
|---|
|  | 46 | *  non-linear regression. It consists of the following steps: | 
|---|
|  | 47 | *  -# hand given (initial) parameters over to model. | 
|---|
|  | 48 | *  -# convert output vector to format suitable to levmar | 
|---|
|  | 49 | *  -# allocate memory for levmar to work in | 
|---|
|  | 50 | *  -# depending on whether the model is constrained or not and whether we | 
|---|
|  | 51 | *   have a derivative, we make use of various levmar functions with prepared | 
|---|
|  | 52 | *   parameters. | 
|---|
|  | 53 | *  -# memory is free'd and some final infos is given. | 
|---|
|  | 54 | * | 
|---|
|  | 55 | *  levmar needs to evaluate the model. To this end, FunctionApproximation has | 
|---|
|  | 56 | *  two functions whose signatures is such as to match with the one required | 
|---|
|  | 57 | *  by the levmar package. Hence, | 
|---|
|  | 58 | *  -# FunctionApproximation::LevMarCallback() | 
|---|
|  | 59 | *  -# FunctionApproximation::LevMarDerivativeCallback() | 
|---|
|  | 60 | *  are used as callbacks by levmar only. | 
|---|
|  | 61 | *  These hand over the current set of parameters to the model, then both bind | 
|---|
|  | 62 | *  FunctionApproximation::evaluate() and | 
|---|
|  | 63 | *  FunctionApproximation::evaluateDerivative(), respectively, and execute | 
|---|
|  | 64 | *  FunctionModel::operator() or FunctionModel::parameter_derivative(), | 
|---|
|  | 65 | *  respectively. | 
|---|
|  | 66 | * | 
|---|
| [66cfc7] | 67 | */ | 
|---|
|  | 68 | class FunctionApproximation | 
|---|
|  | 69 | { | 
|---|
|  | 70 | public: | 
|---|
|  | 71 | //!> typedef for a vector of input arguments | 
|---|
|  | 72 | typedef std::vector<FunctionModel::arguments_t> inputs_t; | 
|---|
| [e1fe7e] | 73 | //!> typedef for a vector of input arguments | 
|---|
|  | 74 | typedef std::vector<FunctionModel::list_of_arguments_t> filtered_inputs_t; | 
|---|
| [66cfc7] | 75 | //!> typedef for a vector of output values | 
|---|
|  | 76 | typedef std::vector<FunctionModel::results_t> outputs_t; | 
|---|
|  | 77 | public: | 
|---|
| [69ab84] | 78 | /** Constructor of the class FunctionApproximation. | 
|---|
|  | 79 | * | 
|---|
|  | 80 | * \param _data container with tuple of (input, output) values | 
|---|
|  | 81 | * \param _model FunctionModel to use in approximation | 
|---|
| [b8f2ea] | 82 | * \param _precision desired precision of fit | 
|---|
| [b40690] | 83 | * \param _maxiterations maximum number of iterations for LevMar's optimization | 
|---|
| [69ab84] | 84 | */ | 
|---|
|  | 85 | FunctionApproximation( | 
|---|
|  | 86 | const TrainingData &_data, | 
|---|
| [b8f2ea] | 87 | FunctionModel &_model, | 
|---|
| [b40690] | 88 | const double _precision, | 
|---|
|  | 89 | const unsigned int _maxiterations); | 
|---|
| [69ab84] | 90 |  | 
|---|
| [66cfc7] | 91 | /** Constructor of the class FunctionApproximation. | 
|---|
|  | 92 | * | 
|---|
|  | 93 | * \param _input_dimension input dimension for this function approximation | 
|---|
|  | 94 | * \param _output_dimension output dimension for this function approximation | 
|---|
| [69ab84] | 95 | * \param _model FunctionModel to use in approximation | 
|---|
| [66cfc7] | 96 | */ | 
|---|
|  | 97 | FunctionApproximation( | 
|---|
|  | 98 | const size_t &_input_dimension, | 
|---|
|  | 99 | const size_t &_output_dimension, | 
|---|
| [b8f2ea] | 100 | FunctionModel &_model, | 
|---|
| [b40690] | 101 | const double _precision, | 
|---|
|  | 102 | const unsigned int _maxiterations) : | 
|---|
| [66cfc7] | 103 | input_dimension(_input_dimension), | 
|---|
|  | 104 | output_dimension(_output_dimension), | 
|---|
| [b40690] | 105 | precision(_precision), | 
|---|
|  | 106 | maxiterations(_maxiterations), | 
|---|
|  | 107 | model(_model) | 
|---|
| [66cfc7] | 108 | {} | 
|---|
|  | 109 | /** Destructor for class FunctionApproximation. | 
|---|
|  | 110 | * | 
|---|
|  | 111 | */ | 
|---|
|  | 112 | ~FunctionApproximation() | 
|---|
|  | 113 | {} | 
|---|
|  | 114 |  | 
|---|
|  | 115 | /** Setter for the training data to be used. | 
|---|
|  | 116 | * | 
|---|
|  | 117 | * \param input vector of input tuples, needs to be of | 
|---|
|  | 118 | *        FunctionApproximation::input_dimension size | 
|---|
|  | 119 | * \param output vector of output tuples, needs to be of | 
|---|
|  | 120 | *        FunctionApproximation::output_dimension size | 
|---|
|  | 121 | */ | 
|---|
| [e1fe7e] | 122 | void setTrainingData(const filtered_inputs_t &input, const outputs_t &output); | 
|---|
| [66cfc7] | 123 |  | 
|---|
|  | 124 | /** Setter for the model function to be used in the approximation. | 
|---|
|  | 125 | * | 
|---|
|  | 126 | */ | 
|---|
|  | 127 | void setModelFunction(FunctionModel &_model); | 
|---|
|  | 128 |  | 
|---|
| [76e63d] | 129 | /** This enum steers whether we use finite differences or | 
|---|
|  | 130 | * FunctionModel::parameter_derivative to calculate the jacobian. | 
|---|
|  | 131 | * | 
|---|
|  | 132 | */ | 
|---|
|  | 133 | enum JacobianMode { | 
|---|
|  | 134 | FiniteDifferences, | 
|---|
|  | 135 | ParameterDerivative, | 
|---|
|  | 136 | MAXMODE | 
|---|
|  | 137 | }; | 
|---|
|  | 138 |  | 
|---|
| [66cfc7] | 139 | /** This starts the fitting process, resulting in the parameters to | 
|---|
|  | 140 | * the model function being optimized with respect to the given training | 
|---|
|  | 141 | * data. | 
|---|
| [76e63d] | 142 | * | 
|---|
|  | 143 | * \param mode whether to use finite differences or the parameter derivative | 
|---|
|  | 144 | *        in calculating the jacobian | 
|---|
| [66cfc7] | 145 | */ | 
|---|
| [76e63d] | 146 | void operator()(const enum JacobianMode mode = FiniteDifferences); | 
|---|
| [66cfc7] | 147 |  | 
|---|
|  | 148 | /** Evaluates the model function for each pair of training tuple and returns | 
|---|
| [5b5724] | 149 | * the output of the function as a vector. | 
|---|
| [66cfc7] | 150 | * | 
|---|
|  | 151 | * This function as a signature compatible to the one required by the | 
|---|
|  | 152 | * LevMar package (with double precision). | 
|---|
|  | 153 | * | 
|---|
|  | 154 | * \param *p array of parameters for the model function of dimension \a m | 
|---|
|  | 155 | * \param *x array of result values of dimension \a n | 
|---|
|  | 156 | * \param m parameter dimension | 
|---|
|  | 157 | * \param n output dimension | 
|---|
|  | 158 | * \param *data additional data, unused here | 
|---|
|  | 159 | */ | 
|---|
|  | 160 | void evaluate(double *p, double *x, int m, int n, void *data); | 
|---|
|  | 161 |  | 
|---|
| [5b5724] | 162 | /** Evaluates the parameter derivative of the model function for each pair of | 
|---|
|  | 163 | * training tuple and returns the output of the function as vector. | 
|---|
|  | 164 | * | 
|---|
|  | 165 | * This function as a signature compatible to the one required by the | 
|---|
|  | 166 | * LevMar package (with double precision). | 
|---|
|  | 167 | * | 
|---|
|  | 168 | * \param *p array of parameters for the model function of dimension \a m | 
|---|
|  | 169 | * \param *jac on output jacobian matrix of result values of dimension \a n times \a m | 
|---|
|  | 170 | * \param m parameter dimension | 
|---|
|  | 171 | * \param n output dimension times parameter dimension | 
|---|
|  | 172 | * \param *data additional data, unused here | 
|---|
|  | 173 | */ | 
|---|
|  | 174 | void evaluateDerivative(double *p, double *jac, int m, int n, void *data); | 
|---|
|  | 175 |  | 
|---|
| [371c8b] | 176 | /** This functions checks whether the parameter derivative of the FunctionModel | 
|---|
|  | 177 | * has been correctly implemented by validating against finite differences. | 
|---|
|  | 178 | * | 
|---|
|  | 179 | * We use LevMar's dlevmar_chkjac() function. | 
|---|
|  | 180 | * | 
|---|
|  | 181 | * \return true - gradients are ok (>0.5), false - else | 
|---|
|  | 182 | */ | 
|---|
|  | 183 | bool checkParameterDerivatives(); | 
|---|
|  | 184 |  | 
|---|
| [66cfc7] | 185 | private: | 
|---|
|  | 186 | static void LevMarCallback(double *p, double *x, int m, int n, void *data); | 
|---|
|  | 187 |  | 
|---|
| [5b5724] | 188 | static void LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data); | 
|---|
|  | 189 |  | 
|---|
|  | 190 | void prepareModel(double *p, int m); | 
|---|
|  | 191 |  | 
|---|
| [63b9f7] | 192 | void prepareParameters(double *&p, int &m) const; | 
|---|
|  | 193 |  | 
|---|
|  | 194 | void prepareOutput(double *&x, int &n) const; | 
|---|
|  | 195 |  | 
|---|
| [66cfc7] | 196 | private: | 
|---|
|  | 197 | //!> input dimension (is fixed from construction) | 
|---|
|  | 198 | const size_t input_dimension; | 
|---|
|  | 199 | //!> output dimension (is fixed from construction) | 
|---|
|  | 200 | const size_t output_dimension; | 
|---|
| [b8f2ea] | 201 | //!> desired precision given to LevMar | 
|---|
|  | 202 | const double precision; | 
|---|
| [b40690] | 203 | //!> maximum number of iterations for LevMar | 
|---|
|  | 204 | const unsigned int maxiterations; | 
|---|
| [66cfc7] | 205 |  | 
|---|
|  | 206 | //!> current input set of training data | 
|---|
| [e1fe7e] | 207 | filtered_inputs_t input_data; | 
|---|
| [66cfc7] | 208 | //!> current output set of training data | 
|---|
|  | 209 | outputs_t output_data; | 
|---|
|  | 210 |  | 
|---|
|  | 211 | //!> the model function to be used in the high-dimensional approximation | 
|---|
|  | 212 | FunctionModel &model; | 
|---|
|  | 213 | }; | 
|---|
|  | 214 |  | 
|---|
|  | 215 | #endif /* FUNCTIONAPPROXIMATION_HPP_ */ | 
|---|