/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2012 University of Bonn. All rights reserved.
* Please see the COPYING file or "Copyright notice" in builder.cpp for details.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* FunctionApproximation.cpp
*
* Created on: 02.10.2012
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "FunctionApproximation.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Log.hpp"
#include "FunctionApproximation/FunctionModel.hpp"
void FunctionApproximation::setTrainingData(const inputs_t &input, const outputs_t &output)
{
ASSERT( input.size() == output.size(),
"FunctionApproximation::setTrainingData() - the number of input and output tuples differ: "+toString(input.size())+"!="
+toString(output.size())+".");
if (input.size() != 0) {
ASSERT( input[0].size() == input_dimension,
"FunctionApproximation::setTrainingData() - the dimension of the input tuples and input dimension differ: "+toString(input[0].size())+"!="
+toString(input_dimension)+".");
input_data = input;
ASSERT( output[0].size() == output_dimension,
"FunctionApproximation::setTrainingData() - the dimension of the output tuples and output dimension differ: "+toString(output[0].size())+"!="
+toString(output_dimension)+".");
output_data = output;
} else {
ELOG(2, "Given vectors of training data are empty, clearing internal vectors accordingly.");
input_data.clear();
output_data.clear();
}
}
void FunctionApproximation::setModelFunction(FunctionModel &_model)
{
model= _model;
}
/* Meyer's (reformulated) problem, minimum at (2.48, 6.18, 3.45) */
void meyer(double *p, double *x, int m, int n, void *data)
{
register int i;
double ui;
for(i=0; i(data);
ASSERT( approximator != NULL,
"LevMarCallback() - received data does not represent a FunctionApproximation object.");
boost::function function =
boost::bind(&FunctionApproximation::evaluate, approximator, _1, _2, _3, _4, _5);
function(p,x,m,n,data);
}
void FunctionApproximation::operator()()
{
// let levmar optimize
register int i, j;
int ret;
double *p;
double *x; // we set zero vector by giving NULL
int m, n;
double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing
//opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!
m = model.getParameterDimension();
n = output_data.size();
const FunctionModel::parameters_t params = model.getParameters();
{
p = new double[m];
size_t index = 0;
for(FunctionModel::parameters_t::const_iterator paramiter = params.begin();
paramiter != params.end();
++paramiter, ++index) {
p[index] = *paramiter;
}
}
{
x = new double[n];
size_t index = 0;
for(outputs_t::const_iterator outiter = output_data.begin();
outiter != output_data.end();
++outiter, ++index) {
x[index] = (*outiter)[0];
}
}
{
double *work, *covar;
work=(double *)malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
if(!work){
ELOG(0, "FunctionApproximation::operator() - memory allocation request failed.");
return;
}
covar=work+LM_DIF_WORKSZ(m, n);
// give this pointer as additional data to construct function pointer in
// LevMarCallback and call
ret=dlevmar_dif(&FunctionApproximation::LevMarCallback, p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
{
std::stringstream covar_msg;
covar_msg << "Covariance of the fit:\n";
for(i=0; i infonames(LM_INFO_SZ);
infonames[0] = std::string("||e||_2 at initial p");
infonames[1] = std::string("||e||_2");
infonames[2] = std::string("||J^T e||_inf");
infonames[3] = std::string("||Dp||_2");
infonames[4] = std::string("mu/max[J^T J]_ii");
infonames[5] = std::string("# iterations");
infonames[6] = std::string("reason for termination");
infonames[7] = std::string(" # function evaluations");
infonames[8] = std::string(" # Jacobian evaluations");
infonames[9] = std::string(" # linear systems solved");
for(i=0; i differences(functionvalue.size(), 0.);
std::transform(
functionvalue.begin(), functionvalue.end(), outiter->begin(),
differences.begin(),
&SquaredDifference);
x[index] = std::accumulate(differences.begin(), differences.end(), 0.);
}
}
}