| 1 | /*
 | 
|---|
| 2 |  * Project: MoleCuilder
 | 
|---|
| 3 |  * Description: creates and alters molecular systems
 | 
|---|
| 4 |  * Copyright (C)  2012 University of Bonn. All rights reserved.
 | 
|---|
| 5 |  * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
 | 
|---|
| 6 |  *
 | 
|---|
| 7 |  *
 | 
|---|
| 8 |  *   This file is part of MoleCuilder.
 | 
|---|
| 9 |  *
 | 
|---|
| 10 |  *    MoleCuilder is free software: you can redistribute it and/or modify
 | 
|---|
| 11 |  *    it under the terms of the GNU General Public License as published by
 | 
|---|
| 12 |  *    the Free Software Foundation, either version 2 of the License, or
 | 
|---|
| 13 |  *    (at your option) any later version.
 | 
|---|
| 14 |  *
 | 
|---|
| 15 |  *    MoleCuilder is distributed in the hope that it will be useful,
 | 
|---|
| 16 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 17 |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 18 |  *    GNU General Public License for more details.
 | 
|---|
| 19 |  *
 | 
|---|
| 20 |  *    You should have received a copy of the GNU General Public License
 | 
|---|
| 21 |  *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>.
 | 
|---|
| 22 |  */
 | 
|---|
| 23 | 
 | 
|---|
| 24 | /*
 | 
|---|
| 25 |  * FunctionApproximation.cpp
 | 
|---|
| 26 |  *
 | 
|---|
| 27 |  *  Created on: 02.10.2012
 | 
|---|
| 28 |  *      Author: heber
 | 
|---|
| 29 |  */
 | 
|---|
| 30 | 
 | 
|---|
| 31 | // include config.h
 | 
|---|
| 32 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 33 | #include <config.h>
 | 
|---|
| 34 | #endif
 | 
|---|
| 35 | 
 | 
|---|
| 36 | #include "CodePatterns/MemDebug.hpp"
 | 
|---|
| 37 | 
 | 
|---|
| 38 | #include "FunctionApproximation.hpp"
 | 
|---|
| 39 | 
 | 
|---|
| 40 | #include <algorithm>
 | 
|---|
| 41 | #include <boost/bind.hpp>
 | 
|---|
| 42 | #include <boost/function.hpp>
 | 
|---|
| 43 | #include <iostream>
 | 
|---|
| 44 | #include <iterator>
 | 
|---|
| 45 | #include <numeric>
 | 
|---|
| 46 | #include <sstream>
 | 
|---|
| 47 | 
 | 
|---|
| 48 | #include <levmar.h>
 | 
|---|
| 49 | 
 | 
|---|
| 50 | #include "CodePatterns/Assert.hpp"
 | 
|---|
| 51 | #include "CodePatterns/Log.hpp"
 | 
|---|
| 52 | 
 | 
|---|
| 53 | #include "FunctionApproximation/FunctionModel.hpp"
 | 
|---|
| 54 | 
 | 
|---|
| 55 | void FunctionApproximation::setTrainingData(const inputs_t &input, const outputs_t &output)
 | 
|---|
| 56 | {
 | 
|---|
| 57 |   ASSERT( input.size() == output.size(),
 | 
|---|
| 58 |       "FunctionApproximation::setTrainingData() - the number of input and output tuples differ: "+toString(input.size())+"!="
 | 
|---|
| 59 |       +toString(output.size())+".");
 | 
|---|
| 60 |   if (input.size() != 0) {
 | 
|---|
| 61 |     ASSERT( input[0].size() == input_dimension,
 | 
|---|
| 62 |         "FunctionApproximation::setTrainingData() - the dimension of the input tuples and input dimension differ: "+toString(input[0].size())+"!="
 | 
|---|
| 63 |         +toString(input_dimension)+".");
 | 
|---|
| 64 |     input_data = input;
 | 
|---|
| 65 |     ASSERT( output[0].size() == output_dimension,
 | 
|---|
| 66 |         "FunctionApproximation::setTrainingData() - the dimension of the output tuples and output dimension differ: "+toString(output[0].size())+"!="
 | 
|---|
| 67 |         +toString(output_dimension)+".");
 | 
|---|
| 68 |     output_data = output;
 | 
|---|
| 69 |   } else {
 | 
|---|
| 70 |     ELOG(2, "Given vectors of training data are empty, clearing internal vectors accordingly.");
 | 
|---|
| 71 |     input_data.clear();
 | 
|---|
| 72 |     output_data.clear();
 | 
|---|
| 73 |   }
 | 
|---|
| 74 | }
 | 
|---|
| 75 | 
 | 
|---|
| 76 | void FunctionApproximation::setModelFunction(FunctionModel &_model)
 | 
|---|
| 77 | {
 | 
|---|
| 78 |   model= _model;
 | 
|---|
| 79 | }
 | 
|---|
| 80 | 
 | 
|---|
| 81 | 
 | 
|---|
| 82 | /* Meyer's (reformulated) problem, minimum at (2.48, 6.18, 3.45) */
 | 
|---|
| 83 | void meyer(double *p, double *x, int m, int n, void *data)
 | 
|---|
| 84 | {
 | 
|---|
| 85 | register int i;
 | 
|---|
| 86 | double ui;
 | 
|---|
| 87 | 
 | 
|---|
| 88 |         for(i=0; i<n; ++i){
 | 
|---|
| 89 |                 ui=0.45+0.05*i;
 | 
|---|
| 90 |                 x[i]=p[0]*exp(10.0*p[1]/(ui+p[2]) - 13.0);
 | 
|---|
| 91 |         }
 | 
|---|
| 92 | }
 | 
|---|
| 93 | 
 | 
|---|
| 94 | void jacmeyer(double *p, double *jac, int m, int n, void *data)
 | 
|---|
| 95 | {
 | 
|---|
| 96 | register int i, j;
 | 
|---|
| 97 | double ui, tmp;
 | 
|---|
| 98 | 
 | 
|---|
| 99 |   for(i=j=0; i<n; ++i){
 | 
|---|
| 100 |           ui=0.45+0.05*i;
 | 
|---|
| 101 |           tmp=exp(10.0*p[1]/(ui+p[2]) - 13.0);
 | 
|---|
| 102 | 
 | 
|---|
| 103 |           jac[j++]=tmp;
 | 
|---|
| 104 |           jac[j++]=10.0*p[0]*tmp/(ui+p[2]);
 | 
|---|
| 105 |           jac[j++]=-10.0*p[0]*p[1]*tmp/((ui+p[2])*(ui+p[2]));
 | 
|---|
| 106 |   }
 | 
|---|
| 107 | }
 | 
|---|
| 108 | 
 | 
|---|
| 109 | /** Callback to circumvent boost::bind, boost::function and function pointer problem.
 | 
|---|
| 110 |  *
 | 
|---|
| 111 |  * See here (second answer!) to the nature of the problem:
 | 
|---|
| 112 |  * http://stackoverflow.com/questions/282372/demote-boostfunction-to-a-plain-function-pointer
 | 
|---|
| 113 |  *
 | 
|---|
| 114 |  * We cannot use a boost::bind bounded boost::function as a function pointer.
 | 
|---|
| 115 |  * boost::function::target() will just return NULL because the signature does not
 | 
|---|
| 116 |  * match. We have to use a C-style callback function and our luck is that
 | 
|---|
| 117 |  * the levmar signature provides for a void* additional data pointer which we
 | 
|---|
| 118 |  * can cast back to our FunctionApproximation class, as we need access to the
 | 
|---|
| 119 |  * data contained, e.g. the FunctionModel reference FunctionApproximation::model.
 | 
|---|
| 120 |  *
 | 
|---|
| 121 |  */
 | 
|---|
| 122 | void FunctionApproximation::LevMarCallback(double *p, double *x, int m, int n, void *data)
 | 
|---|
| 123 | {
 | 
|---|
| 124 |   FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data);
 | 
|---|
| 125 |   ASSERT( approximator != NULL,
 | 
|---|
| 126 |       "LevMarCallback() - received data does not represent a FunctionApproximation object.");
 | 
|---|
| 127 |   boost::function<void(double*,double*,int,int,void*)> function =
 | 
|---|
| 128 |       boost::bind(&FunctionApproximation::evaluate, approximator, _1, _2, _3, _4, _5);
 | 
|---|
| 129 |   function(p,x,m,n,data);
 | 
|---|
| 130 | }
 | 
|---|
| 131 | 
 | 
|---|
| 132 | void FunctionApproximation::operator()()
 | 
|---|
| 133 | {
 | 
|---|
| 134 |   // let levmar optimize
 | 
|---|
| 135 |   register int i, j;
 | 
|---|
| 136 |   int ret;
 | 
|---|
| 137 |   double *p;
 | 
|---|
| 138 |   double *x; // we set zero vector by giving NULL
 | 
|---|
| 139 |   int m, n;
 | 
|---|
| 140 |   double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
 | 
|---|
| 141 | 
 | 
|---|
| 142 |   opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
 | 
|---|
| 143 |   opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing
 | 
|---|
| 144 |   //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!
 | 
|---|
| 145 | 
 | 
|---|
| 146 |   m = model.getParameterDimension();
 | 
|---|
| 147 |   n = 1;
 | 
|---|
| 148 |   const FunctionModel::parameters_t params = model.getParameters();
 | 
|---|
| 149 |   p = new double(m);
 | 
|---|
| 150 |   x = new double(n);
 | 
|---|
| 151 |   size_t index = 0;
 | 
|---|
| 152 |   for(FunctionModel::parameters_t::const_iterator paramiter = params.begin();
 | 
|---|
| 153 |       paramiter != params.end();
 | 
|---|
| 154 |       ++paramiter, ++index) {
 | 
|---|
| 155 |     p[index] = params[index];
 | 
|---|
| 156 |   }
 | 
|---|
| 157 |   x[0] = 0.;
 | 
|---|
| 158 | 
 | 
|---|
| 159 |   {
 | 
|---|
| 160 |     double *work, *covar;
 | 
|---|
| 161 |     work=(double *)malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
 | 
|---|
| 162 |     if(!work){
 | 
|---|
| 163 |       ELOG(0, "FunctionApproximation::operator() - memory allocation request failed.");
 | 
|---|
| 164 |       return;
 | 
|---|
| 165 |     }
 | 
|---|
| 166 |     covar=work+LM_DIF_WORKSZ(m, n);
 | 
|---|
| 167 | 
 | 
|---|
| 168 |     // give this pointer as additional data to construct function pointer in
 | 
|---|
| 169 |     // LevMarCallback and call
 | 
|---|
| 170 |     ret=dlevmar_dif(&FunctionApproximation::LevMarCallback, p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated
 | 
|---|
| 171 | 
 | 
|---|
| 172 |     {
 | 
|---|
| 173 |       std::stringstream covar_msg;
 | 
|---|
| 174 |       covar_msg << "Covariance of the fit:\n";
 | 
|---|
| 175 |       for(i=0; i<m; ++i){
 | 
|---|
| 176 |         for(j=0; j<m; ++j)
 | 
|---|
| 177 |           covar_msg << covar[i*m+j] << " ";
 | 
|---|
| 178 |         covar_msg << std::endl;
 | 
|---|
| 179 |       }
 | 
|---|
| 180 |       covar_msg << std::endl;
 | 
|---|
| 181 |       LOG(1, "INFO: " << covar_msg.str());
 | 
|---|
| 182 |     }
 | 
|---|
| 183 | 
 | 
|---|
| 184 |     free(work);
 | 
|---|
| 185 |   }
 | 
|---|
| 186 | 
 | 
|---|
| 187 | //  {
 | 
|---|
| 188 | //   double err[16];
 | 
|---|
| 189 | //   dlevmar_chkjac(meyer, jacmeyer, p, m, n, NULL, err);
 | 
|---|
| 190 | //   for(i=0; i<n; ++i) printf("gradient %d, err %g\n", i, err[i]);
 | 
|---|
| 191 | //  }
 | 
|---|
| 192 | 
 | 
|---|
| 193 |   {
 | 
|---|
| 194 |    std::stringstream result_msg;
 | 
|---|
| 195 |    result_msg << "Levenberg-Marquardt returned " << ret << " in " << info[5] << " iter, reason " << info[6] << "\nSolution: ";
 | 
|---|
| 196 |    for(i=0; i<m; ++i)
 | 
|---|
| 197 |      result_msg << p[i] << " ";
 | 
|---|
| 198 |    result_msg << "\n\nMinimization info:\n";
 | 
|---|
| 199 |    std::vector<std::string> infonames(LM_INFO_SZ);
 | 
|---|
| 200 |    infonames[0] = std::string("||e||_2 at initial p");
 | 
|---|
| 201 |    infonames[1] = std::string("||e||_2");
 | 
|---|
| 202 |    infonames[2] = std::string("||J^T e||_inf");
 | 
|---|
| 203 |    infonames[3] = std::string("||Dp||_2");
 | 
|---|
| 204 |    infonames[4] = std::string("mu/max[J^T J]_ii");
 | 
|---|
| 205 |    infonames[5] = std::string("# iterations");
 | 
|---|
| 206 |    infonames[6] = std::string("reason for termination");
 | 
|---|
| 207 |    infonames[7] = std::string(" # function evaluations");
 | 
|---|
| 208 |    infonames[8] = std::string(" # Jacobian evaluations");
 | 
|---|
| 209 |    infonames[9] = std::string(" # linear systems solved");
 | 
|---|
| 210 |    for(i=0; i<LM_INFO_SZ; ++i)
 | 
|---|
| 211 |       result_msg << infonames[i] << ": " << info[i] << " ";
 | 
|---|
| 212 |     result_msg << std::endl;
 | 
|---|
| 213 |     LOG(1, "INFO: " << result_msg.str());
 | 
|---|
| 214 |   }
 | 
|---|
| 215 | 
 | 
|---|
| 216 |   delete p;
 | 
|---|
| 217 |   delete x;
 | 
|---|
| 218 | }
 | 
|---|
| 219 | 
 | 
|---|
| 220 | double SquaredDifference(const double res1, const double res2)
 | 
|---|
| 221 | {
 | 
|---|
| 222 |   return (res1-res2)*(res1-res2);
 | 
|---|
| 223 | }
 | 
|---|
| 224 | 
 | 
|---|
| 225 | void FunctionApproximation::evaluate(double *p, double *x, int m, int n, void *data)
 | 
|---|
| 226 | {
 | 
|---|
| 227 |   // first set parameters
 | 
|---|
| 228 |   ASSERT( (size_t)m == model.getParameterDimension(),
 | 
|---|
| 229 |       "FunctionApproximation::evaluate() - LevMar expects "+toString(m)
 | 
|---|
| 230 |       +" parameters but the model function expects "+toString(model.getParameterDimension())+".");
 | 
|---|
| 231 |   ASSERT( n == 1,
 | 
|---|
| 232 |       "FunctionApproximation::evaluate() - we return precisely a single value, LevMar expects something else.");
 | 
|---|
| 233 |   FunctionModel::parameters_t params(m, 0.);
 | 
|---|
| 234 |   std::copy(p, p+m, params.begin());
 | 
|---|
| 235 |   model.setParameters(params);
 | 
|---|
| 236 | 
 | 
|---|
| 237 |   // then evaluate
 | 
|---|
| 238 |   if (!input_data.empty()) {
 | 
|---|
| 239 |     inputs_t::const_iterator initer = input_data.begin();
 | 
|---|
| 240 |     outputs_t::const_iterator outiter = output_data.begin();
 | 
|---|
| 241 |     size_t index = 0;
 | 
|---|
| 242 |     for (; initer != input_data.end(); ++initer, ++outiter, ++index) {
 | 
|---|
| 243 |       // result may be a vector, calculate L2 norm
 | 
|---|
| 244 |       const FunctionModel::results_t functionvalue =
 | 
|---|
| 245 |           model(*initer);
 | 
|---|
| 246 |       std::vector<double> differences(functionvalue.size(), 0.);
 | 
|---|
| 247 |       std::transform(
 | 
|---|
| 248 |           functionvalue.begin(), functionvalue.end(), outiter->begin(),
 | 
|---|
| 249 |           differences.begin(),
 | 
|---|
| 250 |           &SquaredDifference);
 | 
|---|
| 251 |       x[index] = std::accumulate(differences.begin(), differences.end(), 0.);
 | 
|---|
| 252 |     }
 | 
|---|
| 253 |   } else {
 | 
|---|
| 254 |     for (register int i=0;i<n;++i)
 | 
|---|
| 255 |       x[i] = 0.;
 | 
|---|
| 256 |   }
 | 
|---|
| 257 | }
 | 
|---|