| 1 | /* | 
|---|
| 2 | * Project: MoleCuilder | 
|---|
| 3 | * Description: creates and alters molecular systems | 
|---|
| 4 | * Copyright (C)  2012 University of Bonn. All rights reserved. | 
|---|
| 5 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details. | 
|---|
| 6 | * | 
|---|
| 7 | * | 
|---|
| 8 | *   This file is part of MoleCuilder. | 
|---|
| 9 | * | 
|---|
| 10 | *    MoleCuilder is free software: you can redistribute it and/or modify | 
|---|
| 11 | *    it under the terms of the GNU General Public License as published by | 
|---|
| 12 | *    the Free Software Foundation, either version 2 of the License, or | 
|---|
| 13 | *    (at your option) any later version. | 
|---|
| 14 | * | 
|---|
| 15 | *    MoleCuilder is distributed in the hope that it will be useful, | 
|---|
| 16 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 17 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 18 | *    GNU General Public License for more details. | 
|---|
| 19 | * | 
|---|
| 20 | *    You should have received a copy of the GNU General Public License | 
|---|
| 21 | *    along with MoleCuilder.  If not, see <http://www.gnu.org/licenses/>. | 
|---|
| 22 | */ | 
|---|
| 23 |  | 
|---|
| 24 | /* | 
|---|
| 25 | * FunctionApproximation.cpp | 
|---|
| 26 | * | 
|---|
| 27 | *  Created on: 02.10.2012 | 
|---|
| 28 | *      Author: heber | 
|---|
| 29 | */ | 
|---|
| 30 |  | 
|---|
| 31 | // include config.h | 
|---|
| 32 | #ifdef HAVE_CONFIG_H | 
|---|
| 33 | #include <config.h> | 
|---|
| 34 | #endif | 
|---|
| 35 |  | 
|---|
| 36 | //#include "CodePatterns/MemDebug.hpp" | 
|---|
| 37 |  | 
|---|
| 38 | #include "FunctionApproximation.hpp" | 
|---|
| 39 |  | 
|---|
| 40 | #include <algorithm> | 
|---|
| 41 | #include <boost/bind.hpp> | 
|---|
| 42 | #include <boost/function.hpp> | 
|---|
| 43 | #include <iostream> | 
|---|
| 44 | #include <iterator> | 
|---|
| 45 | #include <numeric> | 
|---|
| 46 | #include <sstream> | 
|---|
| 47 |  | 
|---|
| 48 | #include <levmar.h> | 
|---|
| 49 |  | 
|---|
| 50 | #include "CodePatterns/Assert.hpp" | 
|---|
| 51 | #include "CodePatterns/Log.hpp" | 
|---|
| 52 |  | 
|---|
| 53 | #include "FunctionApproximation/FunctionModel.hpp" | 
|---|
| 54 | #include "FunctionApproximation/TrainingData.hpp" | 
|---|
| 55 |  | 
|---|
| 56 | FunctionApproximation::FunctionApproximation( | 
|---|
| 57 | const TrainingData &_data, | 
|---|
| 58 | FunctionModel &_model, | 
|---|
| 59 | const double _precision, | 
|---|
| 60 | const unsigned int _maxiterations) : | 
|---|
| 61 | input_dimension(_data.getTrainingInputs().size()), | 
|---|
| 62 | output_dimension(_data.getTrainingOutputs().size()), | 
|---|
| 63 | precision(_precision), | 
|---|
| 64 | maxiterations(_maxiterations), | 
|---|
| 65 | input_data(_data.getTrainingInputs()), | 
|---|
| 66 | output_data(_data.getTrainingOutputs()), | 
|---|
| 67 | model(_model) | 
|---|
| 68 | {} | 
|---|
| 69 |  | 
|---|
| 70 | void FunctionApproximation::setTrainingData(const filtered_inputs_t &input, const outputs_t &output) | 
|---|
| 71 | { | 
|---|
| 72 | ASSERT( input.size() == output.size(), | 
|---|
| 73 | "FunctionApproximation::setTrainingData() - the number of input and output tuples differ: "+toString(input.size())+"!=" | 
|---|
| 74 | +toString(output.size())+"."); | 
|---|
| 75 | if (input.size() != 0) { | 
|---|
| 76 | ASSERT( input[0].size() == input_dimension, | 
|---|
| 77 | "FunctionApproximation::setTrainingData() - the dimension of the input tuples and input dimension differ: "+toString(input[0].size())+"!=" | 
|---|
| 78 | +toString(input_dimension)+"."); | 
|---|
| 79 | input_data = input; | 
|---|
| 80 | ASSERT( output[0].size() == output_dimension, | 
|---|
| 81 | "FunctionApproximation::setTrainingData() - the dimension of the output tuples and output dimension differ: "+toString(output[0].size())+"!=" | 
|---|
| 82 | +toString(output_dimension)+"."); | 
|---|
| 83 | output_data = output; | 
|---|
| 84 | } else { | 
|---|
| 85 | ELOG(2, "Given vectors of training data are empty, clearing internal vectors accordingly."); | 
|---|
| 86 | input_data.clear(); | 
|---|
| 87 | output_data.clear(); | 
|---|
| 88 | } | 
|---|
| 89 | } | 
|---|
| 90 |  | 
|---|
| 91 | void FunctionApproximation::setModelFunction(FunctionModel &_model) | 
|---|
| 92 | { | 
|---|
| 93 | model= _model; | 
|---|
| 94 | } | 
|---|
| 95 |  | 
|---|
| 96 | /** Callback to circumvent boost::bind, boost::function and function pointer problem. | 
|---|
| 97 | * | 
|---|
| 98 | * See here (second answer!) to the nature of the problem: | 
|---|
| 99 | * http://stackoverflow.com/questions/282372/demote-boostfunction-to-a-plain-function-pointer | 
|---|
| 100 | * | 
|---|
| 101 | * We cannot use a boost::bind bounded boost::function as a function pointer. | 
|---|
| 102 | * boost::function::target() will just return NULL because the signature does not | 
|---|
| 103 | * match. We have to use a C-style callback function and our luck is that | 
|---|
| 104 | * the levmar signature provides for a void* additional data pointer which we | 
|---|
| 105 | * can cast back to our FunctionApproximation class, as we need access to the | 
|---|
| 106 | * data contained, e.g. the FunctionModel reference FunctionApproximation::model. | 
|---|
| 107 | * | 
|---|
| 108 | */ | 
|---|
| 109 | void FunctionApproximation::LevMarCallback(double *p, double *x, int m, int n, void *data) | 
|---|
| 110 | { | 
|---|
| 111 | FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data); | 
|---|
| 112 | ASSERT( approximator != NULL, | 
|---|
| 113 | "LevMarCallback() - received data does not represent a FunctionApproximation object."); | 
|---|
| 114 | boost::function<void(double*,double*,int,int,void*)> function = | 
|---|
| 115 | boost::bind(&FunctionApproximation::evaluate, approximator, _1, _2, _3, _4, _5); | 
|---|
| 116 | function(p,x,m,n,data); | 
|---|
| 117 | } | 
|---|
| 118 |  | 
|---|
| 119 | void FunctionApproximation::LevMarDerivativeCallback(double *p, double *x, int m, int n, void *data) | 
|---|
| 120 | { | 
|---|
| 121 | FunctionApproximation *approximator = static_cast<FunctionApproximation *>(data); | 
|---|
| 122 | ASSERT( approximator != NULL, | 
|---|
| 123 | "LevMarDerivativeCallback() - received data does not represent a FunctionApproximation object."); | 
|---|
| 124 | boost::function<void(double*,double*,int,int,void*)> function = | 
|---|
| 125 | boost::bind(&FunctionApproximation::evaluateDerivative, approximator, _1, _2, _3, _4, _5); | 
|---|
| 126 | function(p,x,m,n,data); | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | void FunctionApproximation::prepareParameters(double *&p, int &m) const | 
|---|
| 130 | { | 
|---|
| 131 | m = model.getParameterDimension(); | 
|---|
| 132 | const FunctionModel::parameters_t params = model.getParameters(); | 
|---|
| 133 | { | 
|---|
| 134 | p = new double[m]; | 
|---|
| 135 | size_t index = 0; | 
|---|
| 136 | for(FunctionModel::parameters_t::const_iterator paramiter = params.begin(); | 
|---|
| 137 | paramiter != params.end(); | 
|---|
| 138 | ++paramiter, ++index) { | 
|---|
| 139 | p[index] = *paramiter; | 
|---|
| 140 | } | 
|---|
| 141 | } | 
|---|
| 142 | } | 
|---|
| 143 |  | 
|---|
| 144 | void FunctionApproximation::prepareOutput(double *&x, int &n) const | 
|---|
| 145 | { | 
|---|
| 146 | n = output_data.size(); | 
|---|
| 147 | { | 
|---|
| 148 | x = new double[n]; | 
|---|
| 149 | size_t index = 0; | 
|---|
| 150 | for(outputs_t::const_iterator outiter = output_data.begin(); | 
|---|
| 151 | outiter != output_data.end(); | 
|---|
| 152 | ++outiter, ++index) { | 
|---|
| 153 | x[index] = (*outiter)[0]; | 
|---|
| 154 | } | 
|---|
| 155 | } | 
|---|
| 156 | } | 
|---|
| 157 |  | 
|---|
| 158 | void FunctionApproximation::operator()(const enum JacobianMode mode) | 
|---|
| 159 | { | 
|---|
| 160 | // let levmar optimize | 
|---|
| 161 | register int i, j; | 
|---|
| 162 | int ret; | 
|---|
| 163 | double *p; | 
|---|
| 164 | double *x; | 
|---|
| 165 | int m, n; | 
|---|
| 166 | double opts[LM_OPTS_SZ], info[LM_INFO_SZ]; | 
|---|
| 167 |  | 
|---|
| 168 | // minim. options [\tau, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, | 
|---|
| 169 | // * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. | 
|---|
| 170 | opts[0]=LM_INIT_MU; opts[1]=1e-15; opts[2]=1e-15; opts[3]=precision; | 
|---|
| 171 | opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing | 
|---|
| 172 | //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute! | 
|---|
| 173 |  | 
|---|
| 174 | prepareParameters(p,m); | 
|---|
| 175 | prepareOutput(x,n); | 
|---|
| 176 |  | 
|---|
| 177 | { | 
|---|
| 178 | double *work, *covar; | 
|---|
| 179 | work=(double *)malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double)); | 
|---|
| 180 | if(!work){ | 
|---|
| 181 | ELOG(0, "FunctionApproximation::operator() - memory allocation request failed."); | 
|---|
| 182 | return; | 
|---|
| 183 | } | 
|---|
| 184 | covar=work+LM_DIF_WORKSZ(m, n); | 
|---|
| 185 |  | 
|---|
| 186 | // give this pointer as additional data to construct function pointer in | 
|---|
| 187 | // LevMarCallback and call | 
|---|
| 188 | if (model.isBoxConstraint()) { | 
|---|
| 189 | FunctionModel::parameters_t lowerbound = model.getLowerBoxConstraints(); | 
|---|
| 190 | FunctionModel::parameters_t upperbound = model.getUpperBoxConstraints(); | 
|---|
| 191 | double *lb = new double[m]; | 
|---|
| 192 | double *ub = new double[m]; | 
|---|
| 193 | for (size_t i=0;i<(size_t)m;++i) { | 
|---|
| 194 | lb[i] = lowerbound[i]; | 
|---|
| 195 | ub[i] = upperbound[i]; | 
|---|
| 196 | } | 
|---|
| 197 | if (mode == FiniteDifferences) { | 
|---|
| 198 | ret=dlevmar_bc_dif( | 
|---|
| 199 | &FunctionApproximation::LevMarCallback, | 
|---|
| 200 | p, x, m, n, lb, ub, NULL, 100, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated | 
|---|
| 201 | } else if (mode == ParameterDerivative) { | 
|---|
| 202 | ret=dlevmar_bc_der( | 
|---|
| 203 | &FunctionApproximation::LevMarCallback, | 
|---|
| 204 | &FunctionApproximation::LevMarDerivativeCallback, | 
|---|
| 205 | p, x, m, n, lb, ub, NULL, 100, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated | 
|---|
| 206 | } else { | 
|---|
| 207 | ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen."); | 
|---|
| 208 | } | 
|---|
| 209 | delete[] lb; | 
|---|
| 210 | delete[] ub; | 
|---|
| 211 | } else { | 
|---|
| 212 | ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen."); | 
|---|
| 213 | if (mode == FiniteDifferences) { | 
|---|
| 214 | ret=dlevmar_dif( | 
|---|
| 215 | &FunctionApproximation::LevMarCallback, | 
|---|
| 216 | p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated | 
|---|
| 217 | } else if (mode == ParameterDerivative) { | 
|---|
| 218 | ret=dlevmar_der( | 
|---|
| 219 | &FunctionApproximation::LevMarCallback, | 
|---|
| 220 | &FunctionApproximation::LevMarDerivativeCallback, | 
|---|
| 221 | p, x, m, n, 1000, opts, info, work, covar, this); // no Jacobian, caller allocates work memory, covariance estimated | 
|---|
| 222 | } else { | 
|---|
| 223 | ASSERT(0, "FunctionApproximation::operator() - Unknown jacobian method chosen."); | 
|---|
| 224 | } | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | { | 
|---|
| 228 | std::stringstream covar_msg; | 
|---|
| 229 | covar_msg << "Covariance of the fit:\n"; | 
|---|
| 230 | for(i=0; i<m; ++i){ | 
|---|
| 231 | for(j=0; j<m; ++j) | 
|---|
| 232 | covar_msg << covar[i*m+j] << " "; | 
|---|
| 233 | covar_msg << std::endl; | 
|---|
| 234 | } | 
|---|
| 235 | covar_msg << std::endl; | 
|---|
| 236 | LOG(1, "INFO: " << covar_msg.str()); | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | free(work); | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 | { | 
|---|
| 243 | std::stringstream result_msg; | 
|---|
| 244 | result_msg << "Levenberg-Marquardt returned " << ret << " in " << info[5] << " iter, reason " << info[6] << "\nSolution: "; | 
|---|
| 245 | for(i=0; i<m; ++i) | 
|---|
| 246 | result_msg << p[i] << " "; | 
|---|
| 247 | result_msg << "\n\nMinimization info:\n"; | 
|---|
| 248 | std::vector<std::string> infonames(LM_INFO_SZ); | 
|---|
| 249 | infonames[0] = std::string("||e||_2 at initial p"); | 
|---|
| 250 | infonames[1] = std::string("||e||_2"); | 
|---|
| 251 | infonames[2] = std::string("||J^T e||_inf"); | 
|---|
| 252 | infonames[3] = std::string("||Dp||_2"); | 
|---|
| 253 | infonames[4] = std::string("mu/max[J^T J]_ii"); | 
|---|
| 254 | infonames[5] = std::string("# iterations"); | 
|---|
| 255 | infonames[6] = std::string("reason for termination"); | 
|---|
| 256 | infonames[7] = std::string(" # function evaluations"); | 
|---|
| 257 | infonames[8] = std::string(" # Jacobian evaluations"); | 
|---|
| 258 | infonames[9] = std::string(" # linear systems solved"); | 
|---|
| 259 | for(i=0; i<LM_INFO_SZ; ++i) | 
|---|
| 260 | result_msg << infonames[i] << ": " << info[i] << " "; | 
|---|
| 261 | result_msg << std::endl; | 
|---|
| 262 | LOG(1, "INFO: " << result_msg.str()); | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | delete[] p; | 
|---|
| 266 | delete[] x; | 
|---|
| 267 | } | 
|---|
| 268 |  | 
|---|
| 269 | bool FunctionApproximation::checkParameterDerivatives() | 
|---|
| 270 | { | 
|---|
| 271 | double *p; | 
|---|
| 272 | int m; | 
|---|
| 273 | const FunctionModel::parameters_t backupparams = model.getParameters(); | 
|---|
| 274 | prepareParameters(p,m); | 
|---|
| 275 | int n = output_data.size(); | 
|---|
| 276 | double *err = new double[n]; | 
|---|
| 277 | dlevmar_chkjac( | 
|---|
| 278 | &FunctionApproximation::LevMarCallback, | 
|---|
| 279 | &FunctionApproximation::LevMarDerivativeCallback, | 
|---|
| 280 | p, m, n, this, err); | 
|---|
| 281 | int i; | 
|---|
| 282 | for(i=0; i<n; ++i) | 
|---|
| 283 | LOG(1, "INFO: gradient " << i << ", err " << err[i] << "."); | 
|---|
| 284 | bool status = true; | 
|---|
| 285 | for(i=0; i<n; ++i) | 
|---|
| 286 | status &= err[i] > 0.5; | 
|---|
| 287 |  | 
|---|
| 288 | if (!status) { | 
|---|
| 289 | int faulty; | 
|---|
| 290 | ELOG(0, "At least one of the parameter derivatives are incorrect."); | 
|---|
| 291 | for (faulty=1; faulty<=m; ++faulty) { | 
|---|
| 292 | LOG(1, "INFO: Trying with only the first " << faulty << " parameters..."); | 
|---|
| 293 | model.setParameters(backupparams); | 
|---|
| 294 | dlevmar_chkjac( | 
|---|
| 295 | &FunctionApproximation::LevMarCallback, | 
|---|
| 296 | &FunctionApproximation::LevMarDerivativeCallback, | 
|---|
| 297 | p, faulty, n, this, err); | 
|---|
| 298 | bool status = true; | 
|---|
| 299 | for(i=0; i<n; ++i) | 
|---|
| 300 | status &= err[i] > 0.5; | 
|---|
| 301 | for(i=0; i<n; ++i) | 
|---|
| 302 | LOG(1, "INFO: gradient(" << faulty << ") " << i << ", err " << err[i] << "."); | 
|---|
| 303 | if (!status) | 
|---|
| 304 | break; | 
|---|
| 305 | } | 
|---|
| 306 | ELOG(0, "The faulty parameter derivative is with respect to the " << faulty << " parameter."); | 
|---|
| 307 | } else | 
|---|
| 308 | LOG(1, "INFO: parameter derivatives are ok."); | 
|---|
| 309 |  | 
|---|
| 310 | delete[] err; | 
|---|
| 311 | delete[] p; | 
|---|
| 312 | model.setParameters(backupparams); | 
|---|
| 313 |  | 
|---|
| 314 | return status; | 
|---|
| 315 | } | 
|---|
| 316 |  | 
|---|
| 317 | double SquaredDifference(const double res1, const double res2) | 
|---|
| 318 | { | 
|---|
| 319 | return (res1-res2)*(res1-res2); | 
|---|
| 320 | } | 
|---|
| 321 |  | 
|---|
| 322 | void FunctionApproximation::prepareModel(double *p, int m) | 
|---|
| 323 | { | 
|---|
| 324 | //  ASSERT( (size_t)m == model.getParameterDimension(), | 
|---|
| 325 | //      "FunctionApproximation::prepareModel() - LevMar expects "+toString(m) | 
|---|
| 326 | //      +" parameters but the model function expects "+toString(model.getParameterDimension())+"."); | 
|---|
| 327 | FunctionModel::parameters_t params(m, 0.); | 
|---|
| 328 | std::copy(p, p+m, params.begin()); | 
|---|
| 329 | model.setParameters(params); | 
|---|
| 330 | } | 
|---|
| 331 |  | 
|---|
| 332 | void FunctionApproximation::evaluate(double *p, double *x, int m, int n, void *data) | 
|---|
| 333 | { | 
|---|
| 334 | // first set parameters | 
|---|
| 335 | prepareModel(p,m); | 
|---|
| 336 |  | 
|---|
| 337 | // then evaluate | 
|---|
| 338 | ASSERT( (size_t)n == output_data.size(), | 
|---|
| 339 | "FunctionApproximation::evaluate() - LevMar expects "+toString(n) | 
|---|
| 340 | +" outputs but we provide "+toString(output_data.size())+"."); | 
|---|
| 341 | if (!output_data.empty()) { | 
|---|
| 342 | filtered_inputs_t::const_iterator initer = input_data.begin(); | 
|---|
| 343 | outputs_t::const_iterator outiter = output_data.begin(); | 
|---|
| 344 | size_t index = 0; | 
|---|
| 345 | for (; initer != input_data.end(); ++initer, ++outiter) { | 
|---|
| 346 | // result may be a vector, calculate L2 norm | 
|---|
| 347 | const FunctionModel::results_t functionvalue = | 
|---|
| 348 | model(*initer); | 
|---|
| 349 | x[index++] = functionvalue[0]; | 
|---|
| 350 | //      std::vector<double> differences(functionvalue.size(), 0.); | 
|---|
| 351 | //      std::transform( | 
|---|
| 352 | //          functionvalue.begin(), functionvalue.end(), outiter->begin(), | 
|---|
| 353 | //          differences.begin(), | 
|---|
| 354 | //          &SquaredDifference); | 
|---|
| 355 | //      x[index] = std::accumulate(differences.begin(), differences.end(), 0.); | 
|---|
| 356 | } | 
|---|
| 357 | } | 
|---|
| 358 | } | 
|---|
| 359 |  | 
|---|
| 360 | void FunctionApproximation::evaluateDerivative(double *p, double *jac, int m, int n, void *data) | 
|---|
| 361 | { | 
|---|
| 362 | // first set parameters | 
|---|
| 363 | prepareModel(p,m); | 
|---|
| 364 |  | 
|---|
| 365 | // then evaluate | 
|---|
| 366 | ASSERT( (size_t)n == output_data.size(), | 
|---|
| 367 | "FunctionApproximation::evaluateDerivative() - LevMar expects "+toString(n) | 
|---|
| 368 | +" outputs but we provide "+toString(output_data.size())+"."); | 
|---|
| 369 | if (!output_data.empty()) { | 
|---|
| 370 | filtered_inputs_t::const_iterator initer = input_data.begin(); | 
|---|
| 371 | outputs_t::const_iterator outiter = output_data.begin(); | 
|---|
| 372 | size_t index = 0; | 
|---|
| 373 | for (; initer != input_data.end(); ++initer, ++outiter) { | 
|---|
| 374 | // result may be a vector, calculate L2 norm | 
|---|
| 375 | for (int paramindex = 0; paramindex < m; ++paramindex) { | 
|---|
| 376 | const FunctionModel::results_t functionvalue = | 
|---|
| 377 | model.parameter_derivative(*initer, paramindex); | 
|---|
| 378 | jac[index++] = functionvalue[0]; | 
|---|
| 379 | } | 
|---|
| 380 | //      std::vector<double> differences(functionvalue.size(), 0.); | 
|---|
| 381 | //      std::transform( | 
|---|
| 382 | //          functionvalue.begin(), functionvalue.end(), outiter->begin(), | 
|---|
| 383 | //          differences.begin(), | 
|---|
| 384 | //          &SquaredDifference); | 
|---|
| 385 | //      x[index] = std::accumulate(differences.begin(), differences.end(), 0.); | 
|---|
| 386 | } | 
|---|
| 387 | } | 
|---|
| 388 | } | 
|---|