/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2014 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* SphericalPointDistributionUnitTest.cpp
*
* Created on: May 29, 2014
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
using namespace std;
#include
#include
#include
// include headers that implement a archive in simple text format
#include
#include
#include "SphericalPointDistributionUnitTest.hpp"
#include
#include
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Log.hpp"
#include "LinearAlgebra/Line.hpp"
#include "Fragmentation/Exporters/SphericalPointDistribution.hpp"
#include "LinearAlgebra/Line.hpp"
#ifdef HAVE_TESTRUNNER
#include "UnitTestMain.hpp"
#endif /*HAVE_TESTRUNNER*/
using namespace boost::assign;
/********************************************** Test classes **************************************/
// Registers the fixture into the 'registry'
CPPUNIT_TEST_SUITE_REGISTRATION( SphericalPointDistributionTest );
void SphericalPointDistributionTest::setUp()
{
// failing asserts should be thrown
ASSERT_DO(Assert::Throw);
setVerbosity(6);
}
void SphericalPointDistributionTest::tearDown()
{
}
/** UnitTest for matchSphericalPointDistributions() with two points
*/
void SphericalPointDistributionTest::matchSphericalPointDistributionsTest_2()
{
SphericalPointDistribution SPD(1.);
// test with one point, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<2>();
SphericalPointDistribution::Polygon_t expected;
expected += Vector(-1.,0.,0.);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, just a flip of axis
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<2>();
SphericalPointDistribution::Polygon_t expected;
expected += Vector(0.,-1.,0.);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, just a flip to another axis
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(0.,0.,-1.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<2>();
SphericalPointDistribution::Polygon_t expected;
expected += Vector(0.,0.,1.);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon += RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<2>();
SphericalPointDistribution::Polygon_t expected;
expected += RotationAxis.rotateVector(Vector(-1.,0.,0.), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
}
void perturbPolygon(
SphericalPointDistribution::Polygon_t &_polygon,
double _amplitude
)
{
for (SphericalPointDistribution::Polygon_t::iterator iter = _polygon.begin();
iter != _polygon.end(); ++iter) {
Vector perturber;
perturber.GetOneNormalVector((*iter));
perturber.Scale(_amplitude);
*iter = *iter + perturber;
(*iter).Normalize();
}
}
static
bool areEqualToWithinBounds(
const SphericalPointDistribution::Polygon_t &_polygon,
const SphericalPointDistribution::Polygon_t &_otherpolygon,
double _amplitude
)
{
// same size?
if (_polygon.size() != _otherpolygon.size())
return false;
// same points ? We just check witrh trivial mapping, nothing fancy ...
bool status = true;
SphericalPointDistribution::Polygon_t::const_iterator iter = _polygon.begin();
SphericalPointDistribution::Polygon_t::const_iterator otheriter = _otherpolygon.begin();
for (; iter != _polygon.end(); ++iter, ++otheriter) {
status &= (*iter - *otheriter).Norm() < _amplitude;
}
return status;
}
/** UnitTest for areEqualToWithinBounds()
*/
void SphericalPointDistributionTest::areEqualToWithinBoundsTest()
{
// test with no points
{
SphericalPointDistribution::Polygon_t polygon;
SphericalPointDistribution::Polygon_t expected = polygon;
CPPUNIT_ASSERT( areEqualToWithinBounds(polygon, expected, std::numeric_limits::epsilon()*1e2) );
}
// test with one point
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
SphericalPointDistribution::Polygon_t expected = polygon;
CPPUNIT_ASSERT( areEqualToWithinBounds(polygon, expected, std::numeric_limits::epsilon()*1e2) );
}
// test with two points
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t expected = polygon;
CPPUNIT_ASSERT( areEqualToWithinBounds(polygon, expected, std::numeric_limits::epsilon()*1e2) );
}
// test with two points in different order: THIS GOES WRONG: We only check trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t expected;
expected += Vector(0.,1.,0.);
expected += Vector(1.,0.,0.);
CPPUNIT_ASSERT( !areEqualToWithinBounds(polygon, expected, std::numeric_limits::epsilon()*1e2) );
}
// test with two different points
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t expected;
expected += Vector(1.01,0.,0.);
expected += Vector(0.,1.,0.);
CPPUNIT_ASSERT( areEqualToWithinBounds(polygon, expected, 0.05) );
CPPUNIT_ASSERT( !areEqualToWithinBounds(polygon, expected, 0.005) );
}
// test with different number of points
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t expected;
expected += Vector(0.,1.,0.);
CPPUNIT_ASSERT( !areEqualToWithinBounds(polygon, expected, 0.05) );
}
}
/** UnitTest for matchSphericalPointDistributions() with three points
*/
void SphericalPointDistributionTest::matchSphericalPointDistributionsTest_3()
{
SphericalPointDistribution SPD(1.);
// test with one point, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<3>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, just a flip of x and y axis
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<3>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter) {
std::swap((*iter)[0], (*iter)[1]);
(*iter)[0] *= -1.;
}
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with two points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.), Vector(-0.5, sqrt(3)*0.5,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<3>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with two points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-0.5, sqrt(3)*0.5,0.), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<3>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with three points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.), Vector(-0.5, sqrt(3)*0.5,0.), Vector(-0.5, -sqrt(3)*0.5,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<3>();
SphericalPointDistribution::Polygon_t expected; // empty cause none are vacant
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with three points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-0.5, sqrt(3)*0.5,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-0.5, -sqrt(3)*0.5,0.), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<3>();
SphericalPointDistribution::Polygon_t expected; // empty cause none are vacant
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
}
/** UnitTest for matchSphericalPointDistributions() with four points
*/
void SphericalPointDistributionTest::matchSphericalPointDistributionsTest_4()
{
SphericalPointDistribution SPD(1.);
// test with one point, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<4>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, just a flip of axis
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<4>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter) {
std::swap((*iter)[0], (*iter)[1]);
(*iter)[0] *= -1.;
}
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with two points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.), Vector(-1./3.0, 2.0*M_SQRT2/3.0,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<4>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with two points, matching trivially, also with slightly perturbed
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.), Vector(-1./3.0, 2.0*M_SQRT2/3.0,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<4>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with two points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1./3.0, 2.0*M_SQRT2/3.0,0.), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<4>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with three points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon +=
Vector(1.,0.,0.),
Vector(-1./3.0, 2.0*M_SQRT2/3.0,0.),
Vector(-1./3.0, -M_SQRT2/3.0, M_SQRT2/sqrt(3));
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<4>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with three points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1./3.0, 2.0*M_SQRT2/3.0,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1./3.0, -M_SQRT2/3.0, M_SQRT2/sqrt(3)), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<4>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
}
/** UnitTest for matchSphericalPointDistributions() with five points
*/
void SphericalPointDistributionTest::matchSphericalPointDistributionsTest_5()
{
SphericalPointDistribution SPD(1.);
// test with one point, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<5>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, just a flip of axis
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<5>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter) {
std::swap((*iter)[0], (*iter)[1]);
(*iter)[0] *= -1.;
}
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with two points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.), Vector(-1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<5>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with two points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180.*M_PI),
RotationAxis.rotateVector(Vector(-1.,0.,0.), 47.6/180.*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<5>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180.*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
// the three remaining points sit on a plane that may be rotated arbitrarily
// so we cannot simply check for equality between expected and remaining
// hence, we just check that they are orthogonal to the first two points
CPPUNIT_ASSERT_EQUAL( expected.size(), remaining.size() );
for (SphericalPointDistribution::Polygon_t::const_iterator fixiter = polygon.begin();
fixiter != polygon.end(); ++fixiter) {
for (SphericalPointDistribution::Polygon_t::const_iterator iter = remaining.begin();
iter != remaining.end(); ++iter) {
CPPUNIT_ASSERT( (*fixiter).IsNormalTo(*iter) );
}
}
}
// test with three points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon +=
Vector(1.,0.,0.),
Vector(-1., 0.0, 0.0),
Vector(0.0, 1., 0.0);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<5>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with three points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1., 0.0, 0.0), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(0.0, 1., 0.0), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<5>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
}
/** UnitTest for matchSphericalPointDistributions() with six points
*/
void SphericalPointDistributionTest::matchSphericalPointDistributionsTest_6()
{
SphericalPointDistribution SPD(1.);
// test with one point, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<6>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, just a flip of axis
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<6>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter) {
std::swap((*iter)[0], (*iter)[1]);
(*iter)[0] *= -1.;
}
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with two points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.), Vector(-1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<6>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second spoint
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with two points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1.,0.,0.), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<6>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second spoint
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
// the four remaining points sit on a plane that may have been rotated arbitrarily
// so we cannot simply check for equality between expected and remaining
// hence, we just check that they are orthogonal to the first two points
CPPUNIT_ASSERT_EQUAL( expected.size(), remaining.size() );
for (SphericalPointDistribution::Polygon_t::const_iterator fixiter = polygon.begin();
fixiter != polygon.end(); ++fixiter) {
for (SphericalPointDistribution::Polygon_t::const_iterator iter = remaining.begin();
iter != remaining.end(); ++iter) {
CPPUNIT_ASSERT( (*fixiter).IsNormalTo(*iter) );
}
}
}
// test with three points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon +=
Vector(1.,0.,0.),
Vector(-1., 0.0, 0.0),
Vector(0.0, 1., 0.0);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<6>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with three points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1., 0.0, 0.0), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(0.0, 1., 0.0), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<6>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
}
/** UnitTest for matchSphericalPointDistributions() with seven points
*/
void SphericalPointDistributionTest::matchSphericalPointDistributionsTest_7()
{
SphericalPointDistribution SPD(1.);
// test with one point, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<7>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, just a flip of axis
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<7>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter) {
std::swap((*iter)[0], (*iter)[1]);
(*iter)[0] *= -1.;
}
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with two points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.), Vector(-1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<7>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with two points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1.,0.,0.), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<7>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
// the five remaining points sit on a plane that may have been rotated arbitrarily
// so we cannot simply check for equality between expected and remaining
// hence, we just check that they are orthogonal to the first two points
CPPUNIT_ASSERT_EQUAL( expected.size(), remaining.size() );
for (SphericalPointDistribution::Polygon_t::const_iterator fixiter = polygon.begin();
fixiter != polygon.end(); ++fixiter) {
for (SphericalPointDistribution::Polygon_t::const_iterator iter = remaining.begin();
iter != remaining.end(); ++iter) {
CPPUNIT_ASSERT( (*fixiter).IsNormalTo(*iter) );
}
}
}
// test with three points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon +=
Vector(1.,0.,0.),
Vector(-1., 0.0, 0.0),
Vector(0.0, 1., 0.0);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<7>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with three points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1., 0.0, 0.0), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(0.0, 1., 0.0), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<7>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
}
/** UnitTest for matchSphericalPointDistributions() with eight points
*/
void SphericalPointDistributionTest::matchSphericalPointDistributionsTest_8()
{
SphericalPointDistribution SPD(1.);
// test with one point, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<8>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with one point, just a flip of axis
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(0.,1.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<8>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter) {
std::swap((*iter)[0], (*iter)[1]);
(*iter)[0] *= -1.;
}
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
}
// test with two points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon += Vector(1.,0.,0.), Vector(-1.,0.,0.);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<8>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with two points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1.,0.,0.), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<8>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
// the six remaining points sit on two planes that may have been rotated arbitrarily
// so we cannot simply check for equality between expected and remaining
// hence, we just check that they are orthogonal to the first two points
CPPUNIT_ASSERT_EQUAL( expected.size(), remaining.size() );
for (SphericalPointDistribution::Polygon_t::const_iterator fixiter = polygon.begin();
fixiter != polygon.end(); ++fixiter) {
SphericalPointDistribution::Polygon_t::const_iterator expectiter = expected.begin();
SphericalPointDistribution::Polygon_t::const_iterator remainiter = remaining.begin();
for (;remainiter != remaining.end(); ++expectiter, ++remainiter) {
// check that points in expected/remaining have same angle to the given ones
// CPPUNIT_ASSERT_EQUAL( (*expectiter).Angle(*fixiter), (*remainiter).Angle(*fixiter) );
CPPUNIT_ASSERT( fabs( (*expectiter).Angle(*fixiter) - (*remainiter).Angle(*fixiter) )
< std::numeric_limits::epsilon()*1e4 );
}
}
}
// test with three points, matching trivially
{
SphericalPointDistribution::Polygon_t polygon;
polygon +=
Vector(1.,0.,0.),
Vector(-1., 0.0, 0.0),
Vector(-1./3.0, 2.0*M_SQRT2/3.0, 0.0);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<8>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
// test with three points, full rotation
{
Line RotationAxis(zeroVec, Vector(0.2, 0.43, 0.6893248));
SphericalPointDistribution::Polygon_t polygon;
polygon +=
RotationAxis.rotateVector(Vector(1.,0.,0.), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1., 0.0, 0.0), 47.6/180*M_PI),
RotationAxis.rotateVector(Vector(-1./3.0, 2.0*M_SQRT2/3.0, 0.0), 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t newpolygon =
SPD.get<8>();
SphericalPointDistribution::Polygon_t expected = newpolygon;
expected.pop_front(); // remove first point
expected.pop_front(); // remove second point
expected.pop_front(); // remove third point
for (SphericalPointDistribution::Polygon_t::iterator iter = expected.begin();
iter != expected.end(); ++iter)
*iter = RotationAxis.rotateVector(*iter, 47.6/180*M_PI);
SphericalPointDistribution::Polygon_t remaining =
SphericalPointDistribution::matchSphericalPointDistributions(
polygon,
newpolygon);
CPPUNIT_ASSERT_EQUAL( expected, remaining );
// also slightly perturbed
const double amplitude = 0.05;
perturbPolygon(polygon, amplitude);
CPPUNIT_ASSERT( areEqualToWithinBounds(expected, remaining, amplitude) );
}
}