1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2014 Frederik Heber. All rights reserved.
|
---|
5 | *
|
---|
6 | *
|
---|
7 | * This file is part of MoleCuilder.
|
---|
8 | *
|
---|
9 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
10 | * it under the terms of the GNU General Public License as published by
|
---|
11 | * the Free Software Foundation, either version 2 of the License, or
|
---|
12 | * (at your option) any later version.
|
---|
13 | *
|
---|
14 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
17 | * GNU General Public License for more details.
|
---|
18 | *
|
---|
19 | * You should have received a copy of the GNU General Public License
|
---|
20 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | */
|
---|
22 |
|
---|
23 | /*
|
---|
24 | * SphericalPointDistribution.cpp
|
---|
25 | *
|
---|
26 | * Created on: May 30, 2014
|
---|
27 | * Author: heber
|
---|
28 | */
|
---|
29 |
|
---|
30 | // include config.h
|
---|
31 | #ifdef HAVE_CONFIG_H
|
---|
32 | #include <config.h>
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | #include "CodePatterns/MemDebug.hpp"
|
---|
36 |
|
---|
37 | #include "SphericalPointDistribution.hpp"
|
---|
38 |
|
---|
39 | #include "CodePatterns/Assert.hpp"
|
---|
40 | #include "CodePatterns/IteratorAdaptors.hpp"
|
---|
41 | #include "CodePatterns/Log.hpp"
|
---|
42 | #include "CodePatterns/toString.hpp"
|
---|
43 |
|
---|
44 | #include <algorithm>
|
---|
45 | #include <boost/math/quaternion.hpp>
|
---|
46 | #include <cmath>
|
---|
47 | #include <functional>
|
---|
48 | #include <iterator>
|
---|
49 | #include <limits>
|
---|
50 | #include <list>
|
---|
51 | #include <vector>
|
---|
52 | #include <map>
|
---|
53 |
|
---|
54 | #include "LinearAlgebra/Line.hpp"
|
---|
55 | #include "LinearAlgebra/Plane.hpp"
|
---|
56 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
57 | #include "LinearAlgebra/Vector.hpp"
|
---|
58 |
|
---|
59 | // static entities
|
---|
60 | const double SphericalPointDistribution::SQRT_3(sqrt(3.0));
|
---|
61 | const double SphericalPointDistribution::warn_amplitude = 1e-2;
|
---|
62 |
|
---|
63 | typedef std::vector<double> DistanceArray_t;
|
---|
64 |
|
---|
65 | // class generator: taken from www.cplusplus.com example std::generate
|
---|
66 | struct c_unique {
|
---|
67 | int current;
|
---|
68 | c_unique() {current=0;}
|
---|
69 | int operator()() {return current++;}
|
---|
70 | } UniqueNumber;
|
---|
71 |
|
---|
72 | inline
|
---|
73 | DistanceArray_t calculatePairwiseDistances(
|
---|
74 | const std::vector<Vector> &_points,
|
---|
75 | const SphericalPointDistribution::IndexList_t &_indices
|
---|
76 | )
|
---|
77 | {
|
---|
78 | DistanceArray_t result;
|
---|
79 | for (SphericalPointDistribution::IndexList_t::const_iterator firstiter = _indices.begin();
|
---|
80 | firstiter != _indices.end(); ++firstiter) {
|
---|
81 | for (SphericalPointDistribution::IndexList_t::const_iterator seconditer = firstiter;
|
---|
82 | seconditer != _indices.end(); ++seconditer) {
|
---|
83 | if (firstiter == seconditer)
|
---|
84 | continue;
|
---|
85 | const double distance = (_points[*firstiter] - _points[*seconditer]).NormSquared();
|
---|
86 | result.push_back(distance);
|
---|
87 | }
|
---|
88 | }
|
---|
89 | return result;
|
---|
90 | }
|
---|
91 |
|
---|
92 | /** Calculate the center of a given set of points in \a _positions but only
|
---|
93 | * for those indicated by \a _indices.
|
---|
94 | *
|
---|
95 | */
|
---|
96 | inline
|
---|
97 | Vector calculateCenter(
|
---|
98 | const SphericalPointDistribution::VectorArray_t &_positions,
|
---|
99 | const SphericalPointDistribution::IndexList_t &_indices)
|
---|
100 | {
|
---|
101 | Vector Center;
|
---|
102 | Center.Zero();
|
---|
103 | for (SphericalPointDistribution::IndexList_t::const_iterator iter = _indices.begin();
|
---|
104 | iter != _indices.end(); ++iter)
|
---|
105 | Center += _positions[*iter];
|
---|
106 | if (!_indices.empty())
|
---|
107 | Center *= 1./(double)_indices.size();
|
---|
108 |
|
---|
109 | return Center;
|
---|
110 | }
|
---|
111 |
|
---|
112 | /** Decides by an orthonormal third vector whether the sign of the rotation
|
---|
113 | * angle should be negative or positive.
|
---|
114 | *
|
---|
115 | * \return -1 or 1
|
---|
116 | */
|
---|
117 | inline
|
---|
118 | double determineSignOfRotation(
|
---|
119 | const Vector &_oldPosition,
|
---|
120 | const Vector &_newPosition,
|
---|
121 | const Vector &_RotationAxis
|
---|
122 | )
|
---|
123 | {
|
---|
124 | Vector dreiBein(_oldPosition);
|
---|
125 | dreiBein.VectorProduct(_RotationAxis);
|
---|
126 | dreiBein.Normalize();
|
---|
127 | const double sign =
|
---|
128 | (dreiBein.ScalarProduct(_newPosition) < 0.) ? -1. : +1.;
|
---|
129 | LOG(6, "DEBUG: oldCenter on plane is " << _oldPosition
|
---|
130 | << ", newCenter in plane is " << _newPosition
|
---|
131 | << ", and dreiBein is " << dreiBein);
|
---|
132 | return sign;
|
---|
133 | }
|
---|
134 |
|
---|
135 | /** Convenience function to recalculate old and new center for determining plane
|
---|
136 | * rotation.
|
---|
137 | */
|
---|
138 | inline
|
---|
139 | void calculateOldAndNewCenters(
|
---|
140 | Vector &_oldCenter,
|
---|
141 | Vector &_newCenter,
|
---|
142 | const SphericalPointDistribution::VectorArray_t &_referencepositions,
|
---|
143 | const SphericalPointDistribution::VectorArray_t &_currentpositions,
|
---|
144 | const SphericalPointDistribution::IndexList_t &_bestmatching)
|
---|
145 | {
|
---|
146 | const size_t NumberIds = std::min(_bestmatching.size(), (size_t)3);
|
---|
147 | SphericalPointDistribution::IndexList_t continuousIds(NumberIds, -1);
|
---|
148 | std::generate(continuousIds.begin(), continuousIds.end(), UniqueNumber);
|
---|
149 | _oldCenter = calculateCenter(_referencepositions, continuousIds);
|
---|
150 | // C++11 defines a copy_n function ...
|
---|
151 | SphericalPointDistribution::IndexList_t::const_iterator enditer = _bestmatching.begin();
|
---|
152 | std::advance(enditer, NumberIds);
|
---|
153 | SphericalPointDistribution::IndexList_t firstbestmatchingIds(NumberIds, -1);
|
---|
154 | std::copy(_bestmatching.begin(), enditer, firstbestmatchingIds.begin());
|
---|
155 | _newCenter = calculateCenter( _currentpositions, firstbestmatchingIds);
|
---|
156 | }
|
---|
157 | /** Returns squared L2 error of the given \a _Matching.
|
---|
158 | *
|
---|
159 | * We compare the pair-wise distances of each associated matching
|
---|
160 | * and check whether these distances each match between \a _old and
|
---|
161 | * \a _new.
|
---|
162 | *
|
---|
163 | * \param _old first set of returnpolygon (fewer or equal to \a _new)
|
---|
164 | * \param _new second set of returnpolygon
|
---|
165 | * \param _Matching matching between the two sets
|
---|
166 | * \return pair with L1 and squared L2 error
|
---|
167 | */
|
---|
168 | std::pair<double, double> SphericalPointDistribution::calculateErrorOfMatching(
|
---|
169 | const std::vector<Vector> &_old,
|
---|
170 | const std::vector<Vector> &_new,
|
---|
171 | const IndexList_t &_Matching)
|
---|
172 | {
|
---|
173 | std::pair<double, double> errors( std::make_pair( 0., 0. ) );
|
---|
174 |
|
---|
175 | if (_Matching.size() > 1) {
|
---|
176 | LOG(3, "INFO: Matching is " << _Matching);
|
---|
177 |
|
---|
178 | // calculate all pair-wise distances
|
---|
179 | IndexList_t keys(_Matching.size());
|
---|
180 | std::generate (keys.begin(), keys.end(), UniqueNumber);
|
---|
181 | const DistanceArray_t firstdistances = calculatePairwiseDistances(_old, keys);
|
---|
182 | const DistanceArray_t seconddistances = calculatePairwiseDistances(_new, _Matching);
|
---|
183 |
|
---|
184 | ASSERT( firstdistances.size() == seconddistances.size(),
|
---|
185 | "calculateL2ErrorOfMatching() - mismatch in pair-wise distance array sizes.");
|
---|
186 | DistanceArray_t::const_iterator firstiter = firstdistances.begin();
|
---|
187 | DistanceArray_t::const_iterator seconditer = seconddistances.begin();
|
---|
188 | for (;(firstiter != firstdistances.end()) && (seconditer != seconddistances.end());
|
---|
189 | ++firstiter, ++seconditer) {
|
---|
190 | const double gap = *firstiter - *seconditer;
|
---|
191 | // L1 error
|
---|
192 | if (errors.first < gap)
|
---|
193 | errors.first = gap;
|
---|
194 | // L2 error
|
---|
195 | errors.second += gap*gap;
|
---|
196 | }
|
---|
197 | } else
|
---|
198 | ELOG(3, "calculateErrorOfMatching() - Given matching's size is less than 2.");
|
---|
199 | LOG(3, "INFO: Resulting errors for matching (L1, L2): "
|
---|
200 | << errors.first << "," << errors.second << ".");
|
---|
201 |
|
---|
202 | return errors;
|
---|
203 | }
|
---|
204 |
|
---|
205 | SphericalPointDistribution::Polygon_t SphericalPointDistribution::removeMatchingPoints(
|
---|
206 | const VectorArray_t &_points,
|
---|
207 | const IndexList_t &_matchingindices
|
---|
208 | )
|
---|
209 | {
|
---|
210 | SphericalPointDistribution::Polygon_t remainingreturnpolygon;
|
---|
211 | IndexArray_t indices(_matchingindices.begin(), _matchingindices.end());
|
---|
212 | std::sort(indices.begin(), indices.end());
|
---|
213 | LOG(4, "DEBUG: sorted matching is " << indices);
|
---|
214 | IndexArray_t remainingindices(_points.size(), -1);
|
---|
215 | std::generate(remainingindices.begin(), remainingindices.end(), UniqueNumber);
|
---|
216 | IndexArray_t::iterator remainiter = std::set_difference(
|
---|
217 | remainingindices.begin(), remainingindices.end(),
|
---|
218 | indices.begin(), indices.end(),
|
---|
219 | remainingindices.begin());
|
---|
220 | remainingindices.erase(remainiter, remainingindices.end());
|
---|
221 | LOG(4, "DEBUG: remaining indices are " << remainingindices);
|
---|
222 | for (IndexArray_t::const_iterator iter = remainingindices.begin();
|
---|
223 | iter != remainingindices.end(); ++iter) {
|
---|
224 | remainingreturnpolygon.push_back(_points[*iter]);
|
---|
225 | }
|
---|
226 |
|
---|
227 | return remainingreturnpolygon;
|
---|
228 | }
|
---|
229 |
|
---|
230 | /** Recursive function to go through all possible matchings.
|
---|
231 | *
|
---|
232 | * \param _MCS structure holding global information to the recursion
|
---|
233 | * \param _matching current matching being build up
|
---|
234 | * \param _indices contains still available indices
|
---|
235 | * \param _matchingsize
|
---|
236 | */
|
---|
237 | void SphericalPointDistribution::recurseMatchings(
|
---|
238 | MatchingControlStructure &_MCS,
|
---|
239 | IndexList_t &_matching,
|
---|
240 | IndexList_t _indices,
|
---|
241 | unsigned int _matchingsize)
|
---|
242 | {
|
---|
243 | LOG(4, "DEBUG: Recursing with current matching " << _matching
|
---|
244 | << ", remaining indices " << _indices
|
---|
245 | << ", and sought size " << _matching.size()+_matchingsize);
|
---|
246 | //!> threshold for L1 error below which matching is immediately acceptable
|
---|
247 | const double L1THRESHOLD = 1e-2;
|
---|
248 | if (!_MCS.foundflag) {
|
---|
249 | LOG(4, "DEBUG: Current matching has size " << _matching.size() << ", places left " << _matchingsize);
|
---|
250 | if (_matchingsize > 0) {
|
---|
251 | // go through all indices
|
---|
252 | for (IndexList_t::iterator iter = _indices.begin();
|
---|
253 | (iter != _indices.end()) && (!_MCS.foundflag);) {
|
---|
254 | // add index to matching
|
---|
255 | _matching.push_back(*iter);
|
---|
256 | LOG(5, "DEBUG: Adding " << *iter << " to matching.");
|
---|
257 | // remove index but keep iterator to position (is the next to erase element)
|
---|
258 | IndexList_t::iterator backupiter = _indices.erase(iter);
|
---|
259 | // recurse with decreased _matchingsize
|
---|
260 | recurseMatchings(_MCS, _matching, _indices, _matchingsize-1);
|
---|
261 | // re-add chosen index and reset index to new position
|
---|
262 | _indices.insert(backupiter, _matching.back());
|
---|
263 | iter = backupiter;
|
---|
264 | // remove index from _matching to make space for the next one
|
---|
265 | _matching.pop_back();
|
---|
266 | }
|
---|
267 | // gone through all indices then exit recursion
|
---|
268 | if (_matching.empty())
|
---|
269 | _MCS.foundflag = true;
|
---|
270 | } else {
|
---|
271 | LOG(3, "INFO: Found matching " << _matching);
|
---|
272 | // calculate errors
|
---|
273 | std::pair<double, double> errors = calculateErrorOfMatching(
|
---|
274 | _MCS.oldpoints, _MCS.newpoints, _matching);
|
---|
275 | if (errors.first < L1THRESHOLD) {
|
---|
276 | _MCS.bestmatching = _matching;
|
---|
277 | _MCS.foundflag = true;
|
---|
278 | } else if (_MCS.bestL2 > errors.second) {
|
---|
279 | _MCS.bestmatching = _matching;
|
---|
280 | _MCS.bestL2 = errors.second;
|
---|
281 | }
|
---|
282 | }
|
---|
283 | }
|
---|
284 | }
|
---|
285 |
|
---|
286 | /** Finds combinatorially the best matching between points in \a _polygon
|
---|
287 | * and \a _newpolygon.
|
---|
288 | *
|
---|
289 | * We find the matching with the smallest L2 error, where we break when we stumble
|
---|
290 | * upon a matching with zero error.
|
---|
291 | *
|
---|
292 | * As points in \a _polygon may be have a weight greater 1 we have to match it to
|
---|
293 | * multiple points in \a _newpolygon. Eventually, these multiple points are combined
|
---|
294 | * for their center of weight, which is the only thing follow-up function see of
|
---|
295 | * these multiple points. Hence, we actually modify \a _newpolygon in the process
|
---|
296 | * such that the returned IndexList_t indicates a bijective mapping in the end.
|
---|
297 | *
|
---|
298 | * \sa recurseMatchings() for going through all matchings
|
---|
299 | *
|
---|
300 | * \param _polygon here, we have indices 0,1,2,...
|
---|
301 | * \param _newpolygon and here we need to find the correct indices
|
---|
302 | * \return list of indices: first in \a _polygon goes to first index for \a _newpolygon
|
---|
303 | */
|
---|
304 | SphericalPointDistribution::IndexList_t SphericalPointDistribution::findBestMatching(
|
---|
305 | const WeightedPolygon_t &_polygon,
|
---|
306 | Polygon_t &_newpolygon
|
---|
307 | )
|
---|
308 | {
|
---|
309 | MatchingControlStructure MCS;
|
---|
310 | MCS.foundflag = false;
|
---|
311 | MCS.bestL2 = std::numeric_limits<double>::max();
|
---|
312 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin();
|
---|
313 | iter != _polygon.end(); ++iter)
|
---|
314 | MCS.oldpoints.push_back(iter->first);
|
---|
315 | MCS.newpoints.insert(MCS.newpoints.begin(), _newpolygon.begin(),_newpolygon.end() );
|
---|
316 |
|
---|
317 | // search for bestmatching combinatorially
|
---|
318 | {
|
---|
319 | // translate polygon into vector to enable index addressing
|
---|
320 | IndexList_t indices(_newpolygon.size());
|
---|
321 | std::generate(indices.begin(), indices.end(), UniqueNumber);
|
---|
322 | IndexList_t matching;
|
---|
323 |
|
---|
324 | // walk through all matchings
|
---|
325 | const unsigned int matchingsize = _polygon.size();
|
---|
326 | ASSERT( matchingsize <= indices.size(),
|
---|
327 | "SphericalPointDistribution::matchSphericalPointDistributions() - not enough new points to choose for matching to old ones.");
|
---|
328 | recurseMatchings(MCS, matching, indices, matchingsize);
|
---|
329 | }
|
---|
330 |
|
---|
331 | // combine multiple points and create simple IndexList from IndexTupleList
|
---|
332 | IndexTupleList_t bestmatching;
|
---|
333 | for (IndexList_t::const_iterator iter = MCS.bestmatching.begin();
|
---|
334 | iter != MCS.bestmatching.end(); ++iter)
|
---|
335 | bestmatching.push_back(IndexList_t(1, *iter));
|
---|
336 | const SphericalPointDistribution::IndexList_t IndexList =
|
---|
337 | joinPoints(_newpolygon, MCS.newpoints, bestmatching);
|
---|
338 |
|
---|
339 | return IndexList;
|
---|
340 | }
|
---|
341 |
|
---|
342 | SphericalPointDistribution::IndexList_t SphericalPointDistribution::joinPoints(
|
---|
343 | Polygon_t &_newpolygon,
|
---|
344 | const VectorArray_t &_newpoints,
|
---|
345 | const IndexTupleList_t &_bestmatching
|
---|
346 | )
|
---|
347 | {
|
---|
348 | // combine all multiple points
|
---|
349 | IndexList_t IndexList;
|
---|
350 | IndexArray_t removalpoints;
|
---|
351 | unsigned int UniqueIndex = _newpolygon.size(); // all indices up to size are used right now
|
---|
352 | VectorArray_t newCenters;
|
---|
353 | newCenters.reserve(_bestmatching.size());
|
---|
354 | for (IndexTupleList_t::const_iterator tupleiter = _bestmatching.begin();
|
---|
355 | tupleiter != _bestmatching.end(); ++tupleiter) {
|
---|
356 | ASSERT (tupleiter->size() > 0,
|
---|
357 | "findBestMatching() - encountered tuple in bestmatching with size 0.");
|
---|
358 | if (tupleiter->size() == 1) {
|
---|
359 | // add point and index
|
---|
360 | IndexList.push_back(*tupleiter->begin());
|
---|
361 | } else {
|
---|
362 | // combine into weighted and normalized center
|
---|
363 | Vector Center = calculateCenter(_newpoints, *tupleiter);
|
---|
364 | Center.Normalize();
|
---|
365 | _newpolygon.push_back(Center);
|
---|
366 | LOG(5, "DEBUG: Combining " << tupleiter->size() << "points to weighted center "
|
---|
367 | << Center << " with new index " << UniqueIndex);
|
---|
368 | // mark for removal
|
---|
369 | removalpoints.insert(removalpoints.end(), tupleiter->begin(), tupleiter->end());
|
---|
370 | // add new index
|
---|
371 | IndexList.push_back(UniqueIndex++);
|
---|
372 | }
|
---|
373 | }
|
---|
374 | // IndexList is now our new bestmatching (that is bijective)
|
---|
375 | LOG(4, "DEBUG: Our new bijective IndexList reads as " << IndexList);
|
---|
376 |
|
---|
377 | // modifying _newpolygon: remove all points in removalpoints, add those in newCenters
|
---|
378 | Polygon_t allnewpoints = _newpolygon;
|
---|
379 | {
|
---|
380 | _newpolygon.clear();
|
---|
381 | std::sort(removalpoints.begin(), removalpoints.end());
|
---|
382 | size_t i = 0;
|
---|
383 | IndexArray_t::const_iterator removeiter = removalpoints.begin();
|
---|
384 | for (Polygon_t::iterator iter = allnewpoints.begin();
|
---|
385 | iter != allnewpoints.end(); ++iter, ++i) {
|
---|
386 | if ((removeiter != removalpoints.end()) && (i == *removeiter)) {
|
---|
387 | // don't add, go to next remove index
|
---|
388 | ++removeiter;
|
---|
389 | } else {
|
---|
390 | // otherwise add points
|
---|
391 | _newpolygon.push_back(*iter);
|
---|
392 | }
|
---|
393 | }
|
---|
394 | }
|
---|
395 | LOG(4, "DEBUG: The polygon with recentered points removed is " << _newpolygon);
|
---|
396 |
|
---|
397 | // map IndexList to new shrinked _newpolygon
|
---|
398 | typedef std::set<unsigned int> IndexSet_t;
|
---|
399 | IndexSet_t SortedIndexList(IndexList.begin(), IndexList.end());
|
---|
400 | IndexList.clear();
|
---|
401 | {
|
---|
402 | size_t offset = 0;
|
---|
403 | IndexSet_t::const_iterator listiter = SortedIndexList.begin();
|
---|
404 | IndexArray_t::const_iterator removeiter = removalpoints.begin();
|
---|
405 | for (size_t i = 0; i < allnewpoints.size(); ++i) {
|
---|
406 | if ((removeiter != removalpoints.end()) && (i == *removeiter)) {
|
---|
407 | ++offset;
|
---|
408 | ++removeiter;
|
---|
409 | } else if ((listiter != SortedIndexList.end()) && (i == *listiter)) {
|
---|
410 | IndexList.push_back(*listiter - offset);
|
---|
411 | ++listiter;
|
---|
412 | }
|
---|
413 | }
|
---|
414 | }
|
---|
415 | LOG(4, "DEBUG: Our new bijective IndexList corrected for removed points reads as "
|
---|
416 | << IndexList);
|
---|
417 |
|
---|
418 | return IndexList;
|
---|
419 | }
|
---|
420 |
|
---|
421 | SphericalPointDistribution::Rotation_t SphericalPointDistribution::findPlaneAligningRotation(
|
---|
422 | const VectorArray_t &_referencepositions,
|
---|
423 | const VectorArray_t &_currentpositions,
|
---|
424 | const IndexList_t &_bestmatching
|
---|
425 | )
|
---|
426 | {
|
---|
427 | #ifndef NDEBUG
|
---|
428 | bool dontcheck = false;
|
---|
429 | #endif
|
---|
430 | // initialize to no rotation
|
---|
431 | Rotation_t Rotation;
|
---|
432 | Rotation.first.Zero();
|
---|
433 | Rotation.first[0] = 1.;
|
---|
434 | Rotation.second = 0.;
|
---|
435 |
|
---|
436 | // calculate center of triangle/line/point consisting of first points of matching
|
---|
437 | Vector oldCenter;
|
---|
438 | Vector newCenter;
|
---|
439 | calculateOldAndNewCenters(
|
---|
440 | oldCenter, newCenter,
|
---|
441 | _referencepositions, _currentpositions, _bestmatching);
|
---|
442 |
|
---|
443 | if ((!oldCenter.IsZero()) && (!newCenter.IsZero())) {
|
---|
444 | LOG(4, "DEBUG: oldCenter is " << oldCenter << ", newCenter is " << newCenter);
|
---|
445 | oldCenter.Normalize();
|
---|
446 | newCenter.Normalize();
|
---|
447 | if (!oldCenter.IsEqualTo(newCenter)) {
|
---|
448 | // calculate rotation axis and angle
|
---|
449 | Rotation.first = oldCenter;
|
---|
450 | Rotation.first.VectorProduct(newCenter);
|
---|
451 | Rotation.second = oldCenter.Angle(newCenter); // /(M_PI/2.);
|
---|
452 | } else {
|
---|
453 | // no rotation required anymore
|
---|
454 | }
|
---|
455 | } else {
|
---|
456 | LOG(4, "DEBUG: oldCenter is " << oldCenter << ", newCenter is " << newCenter);
|
---|
457 | if ((oldCenter.IsZero()) && (newCenter.IsZero())) {
|
---|
458 | // either oldCenter or newCenter (or both) is directly at origin
|
---|
459 | if (_bestmatching.size() == 2) {
|
---|
460 | // line case
|
---|
461 | Vector oldPosition = _currentpositions[*_bestmatching.begin()];
|
---|
462 | Vector newPosition = _referencepositions[0];
|
---|
463 | // check whether we need to rotate at all
|
---|
464 | if (!oldPosition.IsEqualTo(newPosition)) {
|
---|
465 | Rotation.first = oldPosition;
|
---|
466 | Rotation.first.VectorProduct(newPosition);
|
---|
467 | // orientation will fix the sign here eventually
|
---|
468 | Rotation.second = oldPosition.Angle(newPosition);
|
---|
469 | } else {
|
---|
470 | // no rotation required anymore
|
---|
471 | }
|
---|
472 | } else {
|
---|
473 | // triangle case
|
---|
474 | // both triangles/planes have same center, hence get axis by
|
---|
475 | // VectorProduct of Normals
|
---|
476 | Plane newplane(_referencepositions[0], _referencepositions[1], _referencepositions[2]);
|
---|
477 | VectorArray_t vectors;
|
---|
478 | for (IndexList_t::const_iterator iter = _bestmatching.begin();
|
---|
479 | iter != _bestmatching.end(); ++iter)
|
---|
480 | vectors.push_back(_currentpositions[*iter]);
|
---|
481 | Plane oldplane(vectors[0], vectors[1], vectors[2]);
|
---|
482 | Vector oldPosition = oldplane.getNormal();
|
---|
483 | Vector newPosition = newplane.getNormal();
|
---|
484 | // check whether we need to rotate at all
|
---|
485 | if (!oldPosition.IsEqualTo(newPosition)) {
|
---|
486 | Rotation.first = oldPosition;
|
---|
487 | Rotation.first.VectorProduct(newPosition);
|
---|
488 | Rotation.first.Normalize();
|
---|
489 |
|
---|
490 | // construct reference vector to determine direction of rotation
|
---|
491 | const double sign = determineSignOfRotation(oldPosition, newPosition, Rotation.first);
|
---|
492 | Rotation.second = sign * oldPosition.Angle(newPosition);
|
---|
493 | LOG(5, "DEBUG: Rotating plane normals by " << Rotation.second
|
---|
494 | << " around axis " << Rotation.first);
|
---|
495 | } else {
|
---|
496 | // else do nothing
|
---|
497 | }
|
---|
498 | }
|
---|
499 | } else {
|
---|
500 | // TODO: we can't do anything here, but this case needs to be dealt with when
|
---|
501 | // we have no ideal geometries anymore
|
---|
502 | if ((oldCenter-newCenter).Norm() > warn_amplitude)
|
---|
503 | ELOG(2, "oldCenter is " << oldCenter << ", yet newCenter is " << newCenter);
|
---|
504 | #ifndef NDEBUG
|
---|
505 | // else they are considered close enough
|
---|
506 | dontcheck = true;
|
---|
507 | #endif
|
---|
508 | }
|
---|
509 | }
|
---|
510 |
|
---|
511 | #ifndef NDEBUG
|
---|
512 | // check: rotation brings newCenter onto oldCenter position
|
---|
513 | if (!dontcheck) {
|
---|
514 | Line Axis(zeroVec, Rotation.first);
|
---|
515 | Vector test = Axis.rotateVector(newCenter, Rotation.second);
|
---|
516 | LOG(4, "CHECK: rotated newCenter is " << test
|
---|
517 | << ", oldCenter is " << oldCenter);
|
---|
518 | ASSERT( (test - oldCenter).NormSquared() < std::numeric_limits<double>::epsilon()*1e4,
|
---|
519 | "matchSphericalPointDistributions() - rotation does not work as expected by "
|
---|
520 | +toString((test - oldCenter).NormSquared())+".");
|
---|
521 | }
|
---|
522 | #endif
|
---|
523 |
|
---|
524 | return Rotation;
|
---|
525 | }
|
---|
526 |
|
---|
527 | SphericalPointDistribution::Rotation_t SphericalPointDistribution::findPointAligningRotation(
|
---|
528 | const VectorArray_t &remainingold,
|
---|
529 | const VectorArray_t &remainingnew,
|
---|
530 | const IndexList_t &_bestmatching)
|
---|
531 | {
|
---|
532 | // initialize rotation to zero
|
---|
533 | Rotation_t Rotation;
|
---|
534 | Rotation.first.Zero();
|
---|
535 | Rotation.first[0] = 1.;
|
---|
536 | Rotation.second = 0.;
|
---|
537 |
|
---|
538 | // recalculate center
|
---|
539 | Vector oldCenter;
|
---|
540 | Vector newCenter;
|
---|
541 | calculateOldAndNewCenters(
|
---|
542 | oldCenter, newCenter,
|
---|
543 | remainingold, remainingnew, _bestmatching);
|
---|
544 |
|
---|
545 | Vector oldPosition = remainingnew[*_bestmatching.begin()];
|
---|
546 | Vector newPosition = remainingold[0];
|
---|
547 | LOG(6, "DEBUG: oldPosition is " << oldPosition << " and newPosition is " << newPosition);
|
---|
548 | if (!oldPosition.IsEqualTo(newPosition)) {
|
---|
549 | if ((!oldCenter.IsZero()) && (!newCenter.IsZero())) {
|
---|
550 | oldCenter.Normalize(); // note weighted sum of normalized weight is not normalized
|
---|
551 | Rotation.first = oldCenter;
|
---|
552 | LOG(6, "DEBUG: Picking normalized oldCenter as Rotation.first " << oldCenter);
|
---|
553 | oldPosition.ProjectOntoPlane(Rotation.first);
|
---|
554 | newPosition.ProjectOntoPlane(Rotation.first);
|
---|
555 | LOG(6, "DEBUG: Positions after projection are " << oldPosition << " and " << newPosition);
|
---|
556 | } else {
|
---|
557 | if (_bestmatching.size() == 2) {
|
---|
558 | // line situation
|
---|
559 | try {
|
---|
560 | Plane oldplane(oldPosition, oldCenter, newPosition);
|
---|
561 | Rotation.first = oldplane.getNormal();
|
---|
562 | LOG(6, "DEBUG: Plane is " << oldplane << " and normal is " << Rotation.first);
|
---|
563 | } catch (LinearDependenceException &e) {
|
---|
564 | LOG(6, "DEBUG: Vectors defining plane are linearly dependent.");
|
---|
565 | // oldPosition and newPosition are on a line, just flip when not equal
|
---|
566 | if (!oldPosition.IsEqualTo(newPosition)) {
|
---|
567 | Rotation.first.Zero();
|
---|
568 | Rotation.first.GetOneNormalVector(oldPosition);
|
---|
569 | LOG(6, "DEBUG: For flipping we use Rotation.first " << Rotation.first);
|
---|
570 | assert( Rotation.first.ScalarProduct(oldPosition) < std::numeric_limits<double>::epsilon()*1e4);
|
---|
571 | // Rotation.second = M_PI;
|
---|
572 | } else {
|
---|
573 | LOG(6, "DEBUG: oldPosition and newPosition are equivalent.");
|
---|
574 | }
|
---|
575 | }
|
---|
576 | } else {
|
---|
577 | // triangle situation
|
---|
578 | Plane oldplane(remainingold[0], remainingold[1], remainingold[2]);
|
---|
579 | Rotation.first = oldplane.getNormal();
|
---|
580 | LOG(6, "DEBUG: oldPlane is " << oldplane << " and normal is " << Rotation.first);
|
---|
581 | oldPosition.ProjectOntoPlane(Rotation.first);
|
---|
582 | LOG(6, "DEBUG: Positions after projection are " << oldPosition << " and " << newPosition);
|
---|
583 | }
|
---|
584 | }
|
---|
585 | // construct reference vector to determine direction of rotation
|
---|
586 | const double sign = determineSignOfRotation(oldPosition, newPosition, Rotation.first);
|
---|
587 | Rotation.second = sign * oldPosition.Angle(newPosition);
|
---|
588 | } else {
|
---|
589 | LOG(6, "DEBUG: oldPosition and newPosition are equivalent, hence no orientating rotation.");
|
---|
590 | }
|
---|
591 |
|
---|
592 | return Rotation;
|
---|
593 | }
|
---|
594 |
|
---|
595 |
|
---|
596 | SphericalPointDistribution::Polygon_t
|
---|
597 | SphericalPointDistribution::matchSphericalPointDistributions(
|
---|
598 | const SphericalPointDistribution::WeightedPolygon_t &_polygon,
|
---|
599 | SphericalPointDistribution::Polygon_t &_newpolygon
|
---|
600 | )
|
---|
601 | {
|
---|
602 | SphericalPointDistribution::Polygon_t remainingpoints;
|
---|
603 | VectorArray_t remainingold;
|
---|
604 | for (WeightedPolygon_t::const_iterator iter = _polygon.begin();
|
---|
605 | iter != _polygon.end(); ++iter)
|
---|
606 | remainingold.push_back(iter->first);
|
---|
607 | VectorArray_t remainingnew(_newpolygon.begin(), _newpolygon.end());
|
---|
608 | LOG(2, "INFO: Matching old polygon " << _polygon
|
---|
609 | << " with new polygon " << _newpolygon);
|
---|
610 |
|
---|
611 | if (_polygon.size() == _newpolygon.size()) {
|
---|
612 | // same number of points desired as are present? Do nothing
|
---|
613 | LOG(2, "INFO: There are no vacant points to return.");
|
---|
614 | return remainingpoints;
|
---|
615 | }
|
---|
616 |
|
---|
617 | if (_polygon.size() > 0) {
|
---|
618 | IndexList_t bestmatching = findBestMatching(_polygon, _newpolygon);
|
---|
619 | LOG(2, "INFO: Best matching is " << bestmatching);
|
---|
620 |
|
---|
621 | // determine rotation angles to align the two point distributions with
|
---|
622 | // respect to bestmatching:
|
---|
623 | // we use the center between the three first matching points
|
---|
624 | /// the first rotation brings these two centers to coincide
|
---|
625 | VectorArray_t rotated_newpolygon = remainingnew;
|
---|
626 | {
|
---|
627 | Rotation_t Rotation = findPlaneAligningRotation(
|
---|
628 | remainingold,
|
---|
629 | remainingnew,
|
---|
630 | bestmatching);
|
---|
631 | LOG(5, "DEBUG: Rotating coordinate system by " << Rotation.second
|
---|
632 | << " around axis " << Rotation.first);
|
---|
633 | Line Axis(zeroVec, Rotation.first);
|
---|
634 |
|
---|
635 | // apply rotation angle to bring newCenter to oldCenter
|
---|
636 | for (VectorArray_t::iterator iter = rotated_newpolygon.begin();
|
---|
637 | iter != rotated_newpolygon.end(); ++iter) {
|
---|
638 | Vector ¤t = *iter;
|
---|
639 | LOG(6, "DEBUG: Original point is " << current);
|
---|
640 | current = Axis.rotateVector(current, Rotation.second);
|
---|
641 | LOG(6, "DEBUG: Rotated point is " << current);
|
---|
642 | }
|
---|
643 |
|
---|
644 | #ifndef NDEBUG
|
---|
645 | // check: rotated "newCenter" should now equal oldCenter
|
---|
646 | {
|
---|
647 | Vector oldCenter;
|
---|
648 | Vector rotatednewCenter;
|
---|
649 | calculateOldAndNewCenters(
|
---|
650 | oldCenter, rotatednewCenter,
|
---|
651 | remainingold, rotated_newpolygon, bestmatching);
|
---|
652 | // NOTE: Center must not necessarily lie on the sphere with norm 1, hence, we
|
---|
653 | // have to normalize it just as before, as oldCenter and newCenter lengths may differ.
|
---|
654 | if ((!oldCenter.IsZero()) && (!rotatednewCenter.IsZero())) {
|
---|
655 | oldCenter.Normalize();
|
---|
656 | rotatednewCenter.Normalize();
|
---|
657 | LOG(4, "CHECK: rotatednewCenter is " << rotatednewCenter
|
---|
658 | << ", oldCenter is " << oldCenter);
|
---|
659 | ASSERT( (rotatednewCenter - oldCenter).NormSquared() < std::numeric_limits<double>::epsilon()*1e4,
|
---|
660 | "matchSphericalPointDistributions() - rotation does not work as expected by "
|
---|
661 | +toString((rotatednewCenter - oldCenter).NormSquared())+".");
|
---|
662 | }
|
---|
663 | }
|
---|
664 | #endif
|
---|
665 | }
|
---|
666 | /// the second (orientation) rotation aligns the planes such that the
|
---|
667 | /// points themselves coincide
|
---|
668 | if (bestmatching.size() > 1) {
|
---|
669 | Rotation_t Rotation = findPointAligningRotation(
|
---|
670 | remainingold,
|
---|
671 | rotated_newpolygon,
|
---|
672 | bestmatching);
|
---|
673 |
|
---|
674 | // construct RotationAxis and two points on its plane, defining the angle
|
---|
675 | Rotation.first.Normalize();
|
---|
676 | const Line RotationAxis(zeroVec, Rotation.first);
|
---|
677 |
|
---|
678 | LOG(5, "DEBUG: Rotating around self is " << Rotation.second
|
---|
679 | << " around axis " << RotationAxis);
|
---|
680 |
|
---|
681 | #ifndef NDEBUG
|
---|
682 | // check: first bestmatching in rotated_newpolygon and remainingnew
|
---|
683 | // should now equal
|
---|
684 | {
|
---|
685 | const IndexList_t::const_iterator iter = bestmatching.begin();
|
---|
686 | Vector rotatednew = RotationAxis.rotateVector(
|
---|
687 | rotated_newpolygon[*iter],
|
---|
688 | Rotation.second);
|
---|
689 | LOG(4, "CHECK: rotated first new bestmatching is " << rotatednew
|
---|
690 | << " while old was " << remainingold[0]);
|
---|
691 | ASSERT( (rotatednew - remainingold[0]).Norm() < warn_amplitude,
|
---|
692 | "matchSphericalPointDistributions() - orientation rotation ends up off by more than "
|
---|
693 | +toString(warn_amplitude)+".");
|
---|
694 | }
|
---|
695 | #endif
|
---|
696 |
|
---|
697 | for (VectorArray_t::iterator iter = rotated_newpolygon.begin();
|
---|
698 | iter != rotated_newpolygon.end(); ++iter) {
|
---|
699 | Vector ¤t = *iter;
|
---|
700 | LOG(6, "DEBUG: Original point is " << current);
|
---|
701 | current = RotationAxis.rotateVector(current, Rotation.second);
|
---|
702 | LOG(6, "DEBUG: Rotated point is " << current);
|
---|
703 | }
|
---|
704 | }
|
---|
705 |
|
---|
706 | // remove all points in matching and return remaining ones
|
---|
707 | SphericalPointDistribution::Polygon_t remainingpoints =
|
---|
708 | removeMatchingPoints(rotated_newpolygon, bestmatching);
|
---|
709 | LOG(2, "INFO: Remaining points are " << remainingpoints);
|
---|
710 | return remainingpoints;
|
---|
711 | } else
|
---|
712 | return _newpolygon;
|
---|
713 | }
|
---|