[1a48d2] | 1 | /*
|
---|
| 2 | * ForceAnnealing.hpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Aug 02, 2014
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
| 8 | #ifndef FORCEANNEALING_HPP_
|
---|
| 9 | #define FORCEANNEALING_HPP_
|
---|
| 10 |
|
---|
| 11 | // include config.h
|
---|
| 12 | #ifdef HAVE_CONFIG_H
|
---|
| 13 | #include <config.h>
|
---|
| 14 | #endif
|
---|
| 15 |
|
---|
| 16 | #include "Atom/atom.hpp"
|
---|
| 17 | #include "Atom/AtomSet.hpp"
|
---|
| 18 | #include "CodePatterns/Assert.hpp"
|
---|
| 19 | #include "CodePatterns/Info.hpp"
|
---|
| 20 | #include "CodePatterns/Log.hpp"
|
---|
| 21 | #include "CodePatterns/Verbose.hpp"
|
---|
[cdfb6f] | 22 | #include "Descriptors/AtomIdDescriptor.hpp"
|
---|
[1a48d2] | 23 | #include "Dynamics/AtomicForceManipulator.hpp"
|
---|
| 24 | #include "Fragmentation/ForceMatrix.hpp"
|
---|
[cdfb6f] | 25 | #include "Graph/BoostGraphCreator.hpp"
|
---|
| 26 | #include "Graph/BoostGraphHelpers.hpp"
|
---|
| 27 | #include "Graph/BreadthFirstSearchGatherer.hpp"
|
---|
[1a48d2] | 28 | #include "Helpers/helpers.hpp"
|
---|
| 29 | #include "Helpers/defs.hpp"
|
---|
| 30 | #include "LinearAlgebra/Vector.hpp"
|
---|
| 31 | #include "Thermostats/ThermoStatContainer.hpp"
|
---|
| 32 | #include "Thermostats/Thermostat.hpp"
|
---|
| 33 | #include "World.hpp"
|
---|
| 34 |
|
---|
[cdfb6f] | 35 | /** This class is the essential build block for performing structural optimization.
|
---|
[1a48d2] | 36 | *
|
---|
| 37 | * Sadly, we have to use some static instances as so far values cannot be passed
|
---|
[322d58] | 38 | * between actions. Hence, we need to store the current step and the adaptive-
|
---|
[cdfb6f] | 39 | * step width (we cannot perform a line search, as we have no control over the
|
---|
[1a48d2] | 40 | * calculation of the forces).
|
---|
[cdfb6f] | 41 | *
|
---|
| 42 | * However, we do use the bond graph, i.e. if a single atom needs to be shifted
|
---|
| 43 | * to the left, then the whole molecule left of it is shifted, too. This is
|
---|
| 44 | * controlled by the \a max_distance parameter.
|
---|
[1a48d2] | 45 | */
|
---|
| 46 | template <class T>
|
---|
| 47 | class ForceAnnealing : public AtomicForceManipulator<T>
|
---|
| 48 | {
|
---|
| 49 | public:
|
---|
| 50 | /** Constructor of class ForceAnnealing.
|
---|
[322d58] | 51 | *
|
---|
| 52 | * \note We use a fixed delta t of 1.
|
---|
[1a48d2] | 53 | *
|
---|
| 54 | * \param _atoms set of atoms to integrate
|
---|
| 55 | * \param _Deltat time step width in atomic units
|
---|
| 56 | * \param _IsAngstroem whether length units are in angstroem or bohr radii
|
---|
| 57 | * \param _maxSteps number of optimization steps to perform
|
---|
[cdfb6f] | 58 | * \param _max_distance up to this bond order is bond graph taken into account.
|
---|
[1a48d2] | 59 | */
|
---|
| 60 | ForceAnnealing(
|
---|
| 61 | AtomSetMixin<T> &_atoms,
|
---|
[216840] | 62 | const double _Deltat,
|
---|
[1a48d2] | 63 | bool _IsAngstroem,
|
---|
[cdfb6f] | 64 | const size_t _maxSteps,
|
---|
[56b4c6] | 65 | const int _max_distance,
|
---|
| 66 | const double _damping_factor) :
|
---|
[216840] | 67 | AtomicForceManipulator<T>(_atoms, _Deltat, _IsAngstroem),
|
---|
[cdfb6f] | 68 | maxSteps(_maxSteps),
|
---|
| 69 | max_distance(_max_distance),
|
---|
[56b4c6] | 70 | damping_factor(_damping_factor)
|
---|
[1a48d2] | 71 | {}
|
---|
[216840] | 72 |
|
---|
[1a48d2] | 73 | /** Destructor of class ForceAnnealing.
|
---|
| 74 | *
|
---|
| 75 | */
|
---|
| 76 | ~ForceAnnealing()
|
---|
| 77 | {}
|
---|
| 78 |
|
---|
| 79 | /** Performs Gradient optimization.
|
---|
| 80 | *
|
---|
| 81 | * We assume that forces have just been calculated.
|
---|
| 82 | *
|
---|
| 83 | *
|
---|
[b2acca] | 84 | * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
[1a48d2] | 85 | * \param offset offset in matrix file to the first force component
|
---|
| 86 | * \todo This is not yet checked if it is correctly working with DoConstrainedMD set >0.
|
---|
| 87 | */
|
---|
[b2acca] | 88 | void operator()(
|
---|
| 89 | const int _CurrentTimeStep,
|
---|
| 90 | const size_t _offset,
|
---|
| 91 | const bool _UseBondgraph)
|
---|
[1a48d2] | 92 | {
|
---|
| 93 | // make sum of forces equal zero
|
---|
[b2acca] | 94 | AtomicForceManipulator<T>::correctForceMatrixForFixedCenterOfMass(_offset, _CurrentTimeStep);
|
---|
[1a48d2] | 95 |
|
---|
| 96 | // are we in initial step? Then set static entities
|
---|
[b2acca] | 97 | Vector maxComponents(zeroVec);
|
---|
[1a48d2] | 98 | if (currentStep == 0) {
|
---|
| 99 | currentDeltat = AtomicForceManipulator<T>::Deltat;
|
---|
| 100 | currentStep = 1;
|
---|
| 101 | LOG(2, "DEBUG: Initial step, setting values, current step is #" << currentStep);
|
---|
[b2acca] | 102 |
|
---|
| 103 | // always use atomic annealing on first step
|
---|
| 104 | anneal(_CurrentTimeStep, _offset, maxComponents);
|
---|
[1a48d2] | 105 | } else {
|
---|
| 106 | ++currentStep;
|
---|
| 107 | LOG(2, "DEBUG: current step is #" << currentStep);
|
---|
[b2acca] | 108 |
|
---|
| 109 | if (_UseBondgraph)
|
---|
| 110 | annealWithBondGraph(_CurrentTimeStep, _offset, maxComponents);
|
---|
| 111 | else
|
---|
| 112 | anneal(_CurrentTimeStep, _offset, maxComponents);
|
---|
[1a48d2] | 113 | }
|
---|
| 114 |
|
---|
[b2acca] | 115 | LOG(1, "STATUS: Largest remaining force components at step #"
|
---|
| 116 | << currentStep << " are " << maxComponents);
|
---|
| 117 |
|
---|
| 118 | // are we in final step? Remember to reset static entities
|
---|
| 119 | if (currentStep == maxSteps) {
|
---|
| 120 | LOG(2, "DEBUG: Final step, resetting values");
|
---|
| 121 | reset();
|
---|
| 122 | }
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | /** Performs Gradient optimization on the atoms.
|
---|
| 126 | *
|
---|
| 127 | * We assume that forces have just been calculated.
|
---|
| 128 | *
|
---|
| 129 | * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
| 130 | * \param offset offset in matrix file to the first force component
|
---|
| 131 | * \param maxComponents to be filled with maximum force component over all atoms
|
---|
| 132 | */
|
---|
| 133 | void anneal(
|
---|
| 134 | const int CurrentTimeStep,
|
---|
| 135 | const size_t offset,
|
---|
| 136 | Vector &maxComponents)
|
---|
| 137 | {
|
---|
| 138 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
| 139 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
| 140 | // atom's force vector gives steepest descent direction
|
---|
| 141 | const Vector oldPosition = (*iter)->getPositionAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
|
---|
| 142 | const Vector currentPosition = (*iter)->getPosition();
|
---|
| 143 | const Vector oldGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
|
---|
| 144 | const Vector currentGradient = (*iter)->getAtomicForce();
|
---|
| 145 | LOG(4, "DEBUG: oldPosition for atom " << **iter << " is " << oldPosition);
|
---|
| 146 | LOG(4, "DEBUG: currentPosition for atom " << **iter << " is " << currentPosition);
|
---|
| 147 | LOG(4, "DEBUG: oldGradient for atom " << **iter << " is " << oldGradient);
|
---|
| 148 | LOG(4, "DEBUG: currentGradient for atom " << **iter << " is " << currentGradient);
|
---|
| 149 | // LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
|
---|
| 150 |
|
---|
| 151 | // we use Barzilai-Borwein update with position reversed to get descent
|
---|
| 152 | const Vector PositionDifference = currentPosition - oldPosition;
|
---|
| 153 | const Vector GradientDifference = (currentGradient - oldGradient);
|
---|
| 154 | double stepwidth = 0.;
|
---|
| 155 | if (GradientDifference.Norm() > MYEPSILON)
|
---|
| 156 | stepwidth = fabs(PositionDifference.ScalarProduct(GradientDifference))/
|
---|
| 157 | GradientDifference.NormSquared();
|
---|
| 158 | if (fabs(stepwidth) < 1e-10) {
|
---|
| 159 | // dont' warn in first step, deltat usage normal
|
---|
| 160 | if (currentStep != 1)
|
---|
| 161 | ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
|
---|
| 162 | stepwidth = currentDeltat;
|
---|
| 163 | }
|
---|
| 164 | Vector PositionUpdate = stepwidth * currentGradient;
|
---|
| 165 | LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
|
---|
| 166 |
|
---|
| 167 | // extract largest components for showing progress of annealing
|
---|
| 168 | for(size_t i=0;i<NDIM;++i)
|
---|
| 169 | if (currentGradient[i] > maxComponents[i])
|
---|
| 170 | maxComponents[i] = currentGradient[i];
|
---|
| 171 |
|
---|
| 172 | // are we in initial step? Then don't check against velocity
|
---|
| 173 | if ((currentStep > 1) && (!(*iter)->getAtomicVelocity().IsZero()))
|
---|
| 174 | // update with currentDelta tells us how the current gradient relates to
|
---|
| 175 | // the last one: If it has become larger, reduce currentDelta
|
---|
| 176 | if ((PositionUpdate.ScalarProduct((*iter)->getAtomicVelocity()) < 0)
|
---|
| 177 | && (currentDeltat > MinimumDeltat)) {
|
---|
| 178 | currentDeltat = .5*currentDeltat;
|
---|
| 179 | LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate.NormSquared()
|
---|
| 180 | << " > " << (*iter)->getAtomicVelocity().NormSquared()
|
---|
| 181 | << ", decreasing deltat: " << currentDeltat);
|
---|
| 182 | PositionUpdate = currentDeltat * currentGradient;
|
---|
| 183 | }
|
---|
| 184 | // finally set new values
|
---|
| 185 | (*iter)->setPosition(currentPosition + PositionUpdate);
|
---|
| 186 | (*iter)->setAtomicVelocity(PositionUpdate);
|
---|
| 187 | //std::cout << "Id of atom is " << (*iter)->getId() << std::endl;
|
---|
| 188 | // (*iter)->VelocityVerletUpdateU((*iter)->getId(), CurrentTimeStep-1, Deltat, IsAngstroem);
|
---|
| 189 | }
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | /** Performs Gradient optimization on the bonds.
|
---|
| 193 | *
|
---|
| 194 | * We assume that forces have just been calculated. These forces are projected
|
---|
| 195 | * onto the bonds and these are annealed subsequently by moving atoms in the
|
---|
| 196 | * bond neighborhood on either side conjunctively.
|
---|
| 197 | *
|
---|
| 198 | *
|
---|
| 199 | * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
|
---|
| 200 | * \param offset offset in matrix file to the first force component
|
---|
| 201 | * \param maxComponents to be filled with maximum force component over all atoms
|
---|
| 202 | */
|
---|
| 203 | void annealWithBondGraph(
|
---|
| 204 | const int CurrentTimeStep,
|
---|
| 205 | const size_t offset,
|
---|
| 206 | Vector &maxComponents)
|
---|
| 207 | {
|
---|
[cdfb6f] | 208 | // get nodes on either side of selected bond via BFS discovery
|
---|
| 209 | // std::vector<atomId_t> atomids;
|
---|
| 210 | // for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
| 211 | // iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
| 212 | // atomids.push_back((*iter)->getId());
|
---|
| 213 | // }
|
---|
| 214 | // ASSERT( atomids.size() == AtomicForceManipulator<T>::atoms.size(),
|
---|
| 215 | // "ForceAnnealing() - could not gather all atomic ids?");
|
---|
| 216 | BoostGraphCreator BGcreator;
|
---|
| 217 | BGcreator.createFromRange(
|
---|
| 218 | AtomicForceManipulator<T>::atoms.begin(),
|
---|
| 219 | AtomicForceManipulator<T>::atoms.end(),
|
---|
| 220 | AtomicForceManipulator<T>::atoms.size(),
|
---|
| 221 | BreadthFirstSearchGatherer::AlwaysTruePredicate);
|
---|
| 222 | BreadthFirstSearchGatherer NodeGatherer(BGcreator);
|
---|
| 223 |
|
---|
| 224 | std::map<atomId_t, Vector> GatheredUpdates; //!< gathers all updates which are applied at the end
|
---|
[1a48d2] | 225 | for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
|
---|
| 226 | iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
|
---|
| 227 | // atom's force vector gives steepest descent direction
|
---|
[b2acca] | 228 | const Vector oldPosition = (*iter)->getPositionAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
|
---|
[1a48d2] | 229 | const Vector currentPosition = (*iter)->getPosition();
|
---|
[b2acca] | 230 | const Vector oldGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
|
---|
[1a48d2] | 231 | const Vector currentGradient = (*iter)->getAtomicForce();
|
---|
| 232 | LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
|
---|
[1e49e6] | 233 |
|
---|
[322d58] | 234 | // we use Barzilai-Borwein update with position reversed to get descent
|
---|
| 235 | const Vector GradientDifference = (currentGradient - oldGradient);
|
---|
| 236 | const double stepwidth =
|
---|
| 237 | fabs((currentPosition - oldPosition).ScalarProduct(GradientDifference))/
|
---|
| 238 | GradientDifference.NormSquared();
|
---|
| 239 | Vector PositionUpdate = stepwidth * currentGradient;
|
---|
| 240 | if (fabs(stepwidth) < 1e-10) {
|
---|
| 241 | // dont' warn in first step, deltat usage normal
|
---|
| 242 | if (currentStep != 1)
|
---|
| 243 | ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
|
---|
| 244 | PositionUpdate = currentDeltat * currentGradient;
|
---|
| 245 | }
|
---|
[1a48d2] | 246 | LOG(3, "DEBUG: Update would be " << PositionUpdate);
|
---|
| 247 |
|
---|
[cdfb6f] | 248 | // // add update to central atom
|
---|
| 249 | // const atomId_t atomid = (*iter)->getId();
|
---|
| 250 | // if (GatheredUpdates.count(atomid)) {
|
---|
| 251 | // GatheredUpdates[atomid] += PositionUpdate;
|
---|
| 252 | // } else
|
---|
| 253 | // GatheredUpdates.insert( std::make_pair(atomid, PositionUpdate) );
|
---|
| 254 |
|
---|
| 255 | // We assume that a force is local, i.e. a bond is too short yet and hence
|
---|
| 256 | // the atom needs to be moved. However, all the adjacent (bound) atoms might
|
---|
| 257 | // already be at the perfect distance. If we just move the atom alone, we ruin
|
---|
| 258 | // all the other bonds. Hence, it would be sensible to move every atom found
|
---|
| 259 | // through the bond graph in the direction of the force as well by the same
|
---|
| 260 | // PositionUpdate. This is just what we are going to do.
|
---|
| 261 |
|
---|
| 262 | /// get all nodes from bonds in the direction of the current force
|
---|
| 263 |
|
---|
| 264 | // remove edges facing in the wrong direction
|
---|
| 265 | std::vector<bond::ptr> removed_bonds;
|
---|
| 266 | const BondList& ListOfBonds = (*iter)->getListOfBonds();
|
---|
| 267 | for(BondList::const_iterator bonditer = ListOfBonds.begin();
|
---|
| 268 | bonditer != ListOfBonds.end(); ++bonditer) {
|
---|
| 269 | const bond ¤t_bond = *(*bonditer);
|
---|
| 270 | LOG(2, "DEBUG: Looking at bond " << current_bond);
|
---|
| 271 | Vector BondVector = (*iter)->getPosition();
|
---|
| 272 | BondVector -= ((*iter)->getId() == current_bond.rightatom->getId())
|
---|
| 273 | ? current_bond.rightatom->getPosition() : current_bond.leftatom->getPosition();
|
---|
| 274 | BondVector.Normalize();
|
---|
| 275 | if (BondVector.ScalarProduct(currentGradient) < 0) {
|
---|
| 276 | removed_bonds.push_back(*bonditer);
|
---|
| 277 | #ifndef NDEBUG
|
---|
| 278 | const bool status =
|
---|
| 279 | #endif
|
---|
| 280 | BGcreator.removeEdge(current_bond.leftatom->getId(), current_bond.rightatom->getId());
|
---|
| 281 | ASSERT( status, "ForceAnnealing() - edge to found bond is not present?");
|
---|
| 282 | }
|
---|
| 283 | }
|
---|
| 284 | BoostGraphHelpers::Nodeset_t bondside_set = NodeGatherer((*iter)->getId(), max_distance);
|
---|
| 285 | const BreadthFirstSearchGatherer::distance_map_t &distance_map = NodeGatherer.getDistances();
|
---|
| 286 | std::sort(bondside_set.begin(), bondside_set.end());
|
---|
| 287 | // re-add those edges
|
---|
| 288 | for (std::vector<bond::ptr>::const_iterator bonditer = removed_bonds.begin();
|
---|
| 289 | bonditer != removed_bonds.end(); ++bonditer)
|
---|
| 290 | BGcreator.addEdge((*bonditer)->leftatom->getId(), (*bonditer)->rightatom->getId());
|
---|
| 291 |
|
---|
| 292 | // apply PositionUpdate to all nodes in the bondside_set
|
---|
| 293 | for (BoostGraphHelpers::Nodeset_t::const_iterator setiter = bondside_set.begin();
|
---|
| 294 | setiter != bondside_set.end(); ++setiter) {
|
---|
| 295 | const BreadthFirstSearchGatherer::distance_map_t::const_iterator diter
|
---|
| 296 | = distance_map.find(*setiter);
|
---|
| 297 | ASSERT( diter != distance_map.end(),
|
---|
| 298 | "ForceAnnealing() - could not find distance to an atom.");
|
---|
| 299 | const double factor = pow(damping_factor, diter->second);
|
---|
| 300 | LOG(3, "DEBUG: Update for atom #" << *setiter << " will be "
|
---|
| 301 | << factor << "*" << PositionUpdate);
|
---|
| 302 | if (GatheredUpdates.count((*setiter))) {
|
---|
| 303 | GatheredUpdates[(*setiter)] += factor*PositionUpdate;
|
---|
| 304 | } else {
|
---|
| 305 | GatheredUpdates.insert(
|
---|
| 306 | std::make_pair(
|
---|
| 307 | (*setiter),
|
---|
| 308 | factor*PositionUpdate) );
|
---|
| 309 | }
|
---|
| 310 | }
|
---|
| 311 |
|
---|
[7f833c] | 312 | // extract largest components for showing progress of annealing
|
---|
| 313 | for(size_t i=0;i<NDIM;++i)
|
---|
| 314 | if (currentGradient[i] > maxComponents[i])
|
---|
| 315 | maxComponents[i] = currentGradient[i];
|
---|
[1a48d2] | 316 | }
|
---|
[cdfb6f] | 317 | // apply the gathered updates
|
---|
| 318 | for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
|
---|
| 319 | iter != GatheredUpdates.end(); ++iter) {
|
---|
| 320 | const atomId_t &atomid = iter->first;
|
---|
| 321 | const Vector &update = iter->second;
|
---|
| 322 | atom* const walker = World::getInstance().getAtom(AtomById(atomid));
|
---|
| 323 | ASSERT( walker != NULL,
|
---|
| 324 | "ForceAnnealing() - walker with id "+toString(atomid)+" has suddenly disappeared.");
|
---|
[866dec] | 325 | LOG(3, "DEBUG: Applying update " << update << " to atom #" << atomid
|
---|
| 326 | << ", namely " << *walker);
|
---|
[cdfb6f] | 327 | walker->setPosition( walker->getPosition() + update );
|
---|
| 328 | }
|
---|
[1a48d2] | 329 | }
|
---|
| 330 |
|
---|
[1e49e6] | 331 | /** Reset function to unset static entities and artificial velocities.
|
---|
| 332 | *
|
---|
| 333 | */
|
---|
| 334 | void reset()
|
---|
| 335 | {
|
---|
| 336 | currentDeltat = 0.;
|
---|
| 337 | currentStep = 0;
|
---|
| 338 | }
|
---|
| 339 |
|
---|
[1a48d2] | 340 | private:
|
---|
| 341 | //!> contains the current step in relation to maxsteps
|
---|
| 342 | static size_t currentStep;
|
---|
| 343 | //!> contains the maximum number of steps, determines initial and final step with currentStep
|
---|
| 344 | size_t maxSteps;
|
---|
| 345 | static double currentDeltat;
|
---|
| 346 | //!> minimum deltat for internal while loop (adaptive step width)
|
---|
| 347 | static double MinimumDeltat;
|
---|
[cdfb6f] | 348 | //!> contains the maximum bond graph distance up to which shifts of a single atom are spread
|
---|
| 349 | const int max_distance;
|
---|
| 350 | //!> the shifted is dampened by this factor with the power of the bond graph distance to the shift causing atom
|
---|
| 351 | const double damping_factor;
|
---|
[1a48d2] | 352 | };
|
---|
| 353 |
|
---|
| 354 | template <class T>
|
---|
| 355 | double ForceAnnealing<T>::currentDeltat = 0.;
|
---|
| 356 | template <class T>
|
---|
| 357 | size_t ForceAnnealing<T>::currentStep = 0;
|
---|
| 358 | template <class T>
|
---|
| 359 | double ForceAnnealing<T>::MinimumDeltat = 1e-8;
|
---|
| 360 |
|
---|
| 361 | #endif /* FORCEANNEALING_HPP_ */
|
---|