| 1 | /* | 
|---|
| 2 | * Project: MoleCuilder | 
|---|
| 3 | * Description: creates and alters molecular systems | 
|---|
| 4 | * Copyright (C)  2010 University of Bonn. All rights reserved. | 
|---|
| 5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | /* | 
|---|
| 9 | * BoundaryTriangleSet.cpp | 
|---|
| 10 | * | 
|---|
| 11 | *  Created on: Jul 29, 2010 | 
|---|
| 12 | *      Author: heber | 
|---|
| 13 | */ | 
|---|
| 14 |  | 
|---|
| 15 | // include config.h | 
|---|
| 16 | #ifdef HAVE_CONFIG_H | 
|---|
| 17 | #include <config.h> | 
|---|
| 18 | #endif | 
|---|
| 19 |  | 
|---|
| 20 | #include "Helpers/MemDebug.hpp" | 
|---|
| 21 |  | 
|---|
| 22 | #include "BoundaryTriangleSet.hpp" | 
|---|
| 23 |  | 
|---|
| 24 | #include <iostream> | 
|---|
| 25 |  | 
|---|
| 26 | #include "BoundaryLineSet.hpp" | 
|---|
| 27 | #include "BoundaryPointSet.hpp" | 
|---|
| 28 | #include "TesselPoint.hpp" | 
|---|
| 29 |  | 
|---|
| 30 | #include "Helpers/Assert.hpp" | 
|---|
| 31 | #include "Helpers/Info.hpp" | 
|---|
| 32 | #include "LinearAlgebra/Line.hpp" | 
|---|
| 33 | #include "Helpers/Log.hpp" | 
|---|
| 34 | #include "LinearAlgebra/Plane.hpp" | 
|---|
| 35 | #include "LinearAlgebra/Vector.hpp" | 
|---|
| 36 | #include "Helpers/Verbose.hpp" | 
|---|
| 37 |  | 
|---|
| 38 | using namespace std; | 
|---|
| 39 |  | 
|---|
| 40 | /** Constructor for BoundaryTriangleSet. | 
|---|
| 41 | */ | 
|---|
| 42 | BoundaryTriangleSet::BoundaryTriangleSet() : | 
|---|
| 43 | Nr(-1) | 
|---|
| 44 | { | 
|---|
| 45 | Info FunctionInfo(__func__); | 
|---|
| 46 | for (int i = 0; i < 3; i++) { | 
|---|
| 47 | endpoints[i] = NULL; | 
|---|
| 48 | lines[i] = NULL; | 
|---|
| 49 | } | 
|---|
| 50 | } | 
|---|
| 51 | ; | 
|---|
| 52 |  | 
|---|
| 53 | /** Constructor for BoundaryTriangleSet with three lines. | 
|---|
| 54 | * \param *line[3] lines that make up the triangle | 
|---|
| 55 | * \param number number of triangle | 
|---|
| 56 | */ | 
|---|
| 57 | BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) : | 
|---|
| 58 | Nr(number) | 
|---|
| 59 | { | 
|---|
| 60 | Info FunctionInfo(__func__); | 
|---|
| 61 | // set number | 
|---|
| 62 | // set lines | 
|---|
| 63 | for (int i = 0; i < 3; i++) { | 
|---|
| 64 | lines[i] = line[i]; | 
|---|
| 65 | lines[i]->AddTriangle(this); | 
|---|
| 66 | } | 
|---|
| 67 | // get ascending order of endpoints | 
|---|
| 68 | PointMap OrderMap; | 
|---|
| 69 | for (int i = 0; i < 3; i++) { | 
|---|
| 70 | // for all three lines | 
|---|
| 71 | for (int j = 0; j < 2; j++) { // for both endpoints | 
|---|
| 72 | OrderMap.insert(pair<int, class BoundaryPointSet *> (line[i]->endpoints[j]->Nr, line[i]->endpoints[j])); | 
|---|
| 73 | // and we don't care whether insertion fails | 
|---|
| 74 | } | 
|---|
| 75 | } | 
|---|
| 76 | // set endpoints | 
|---|
| 77 | int Counter = 0; | 
|---|
| 78 | DoLog(0) && (Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl); | 
|---|
| 79 | for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) { | 
|---|
| 80 | endpoints[Counter] = runner->second; | 
|---|
| 81 | DoLog(0) && (Log() << Verbose(0) << " " << *endpoints[Counter] << endl); | 
|---|
| 82 | Counter++; | 
|---|
| 83 | } | 
|---|
| 84 | ASSERT(Counter >= 3,"We have a triangle with only two distinct endpoints!"); | 
|---|
| 85 | }; | 
|---|
| 86 |  | 
|---|
| 87 |  | 
|---|
| 88 | /** Destructor of BoundaryTriangleSet. | 
|---|
| 89 | * Removes itself from each of its lines' LineMap and removes them if necessary. | 
|---|
| 90 | * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle() | 
|---|
| 91 | */ | 
|---|
| 92 | BoundaryTriangleSet::~BoundaryTriangleSet() | 
|---|
| 93 | { | 
|---|
| 94 | Info FunctionInfo(__func__); | 
|---|
| 95 | for (int i = 0; i < 3; i++) { | 
|---|
| 96 | if (lines[i] != NULL) { | 
|---|
| 97 | if (lines[i]->triangles.erase(Nr)) { | 
|---|
| 98 | //Log() << Verbose(0) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl; | 
|---|
| 99 | } | 
|---|
| 100 | if (lines[i]->triangles.empty()) { | 
|---|
| 101 | //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl; | 
|---|
| 102 | delete (lines[i]); | 
|---|
| 103 | lines[i] = NULL; | 
|---|
| 104 | } | 
|---|
| 105 | } | 
|---|
| 106 | } | 
|---|
| 107 | //Log() << Verbose(0) << "Erasing triangle Nr." << Nr << " itself." << endl; | 
|---|
| 108 | } | 
|---|
| 109 | ; | 
|---|
| 110 |  | 
|---|
| 111 | /** Calculates the normal vector for this triangle. | 
|---|
| 112 | * Is made unique by comparison with \a OtherVector to point in the other direction. | 
|---|
| 113 | * \param &OtherVector direction vector to make normal vector unique. | 
|---|
| 114 | */ | 
|---|
| 115 | void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector) | 
|---|
| 116 | { | 
|---|
| 117 | Info FunctionInfo(__func__); | 
|---|
| 118 | // get normal vector | 
|---|
| 119 | NormalVector = Plane((endpoints[0]->node->getPosition()), | 
|---|
| 120 | (endpoints[1]->node->getPosition()), | 
|---|
| 121 | (endpoints[2]->node->getPosition())).getNormal(); | 
|---|
| 122 |  | 
|---|
| 123 | // make it always point inward (any offset vector onto plane projected onto normal vector suffices) | 
|---|
| 124 | if (NormalVector.ScalarProduct(OtherVector) > 0.) | 
|---|
| 125 | NormalVector.Scale(-1.); | 
|---|
| 126 | DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl); | 
|---|
| 127 | } | 
|---|
| 128 | ; | 
|---|
| 129 |  | 
|---|
| 130 | /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses. | 
|---|
| 131 | * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane | 
|---|
| 132 | * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not. | 
|---|
| 133 | * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line | 
|---|
| 134 | * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between | 
|---|
| 135 | * the first two basepoints) or not. | 
|---|
| 136 | * \param *out output stream for debugging | 
|---|
| 137 | * \param &MolCenter offset vector of line | 
|---|
| 138 | * \param &x second endpoint of line, minus \a *MolCenter is directional vector of line | 
|---|
| 139 | * \param &Intersection intersection on plane on return | 
|---|
| 140 | * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle. | 
|---|
| 141 | */ | 
|---|
| 142 |  | 
|---|
| 143 | bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector & MolCenter, const Vector & x, Vector &Intersection) const | 
|---|
| 144 | { | 
|---|
| 145 | Info FunctionInfo(__func__); | 
|---|
| 146 | Vector CrossPoint; | 
|---|
| 147 | Vector helper; | 
|---|
| 148 |  | 
|---|
| 149 | try { | 
|---|
| 150 | Line centerLine = makeLineThrough(MolCenter, x); | 
|---|
| 151 | Intersection = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(centerLine); | 
|---|
| 152 |  | 
|---|
| 153 | DoLog(1) && (Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl); | 
|---|
| 154 | DoLog(1) && (Log() << Verbose(1) << "INFO: Line is from " << MolCenter << " to " << x << "." << endl); | 
|---|
| 155 | DoLog(1) && (Log() << Verbose(1) << "INFO: Intersection is " << Intersection << "." << endl); | 
|---|
| 156 |  | 
|---|
| 157 | if (Intersection.DistanceSquared(endpoints[0]->node->getPosition()) < MYEPSILON) { | 
|---|
| 158 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl); | 
|---|
| 159 | return true; | 
|---|
| 160 | }   else if (Intersection.DistanceSquared(endpoints[1]->node->getPosition()) < MYEPSILON) { | 
|---|
| 161 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl); | 
|---|
| 162 | return true; | 
|---|
| 163 | }   else if (Intersection.DistanceSquared(endpoints[2]->node->getPosition()) < MYEPSILON) { | 
|---|
| 164 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl); | 
|---|
| 165 | return true; | 
|---|
| 166 | } | 
|---|
| 167 | // Calculate cross point between one baseline and the line from the third endpoint to intersection | 
|---|
| 168 | int i = 0; | 
|---|
| 169 | do { | 
|---|
| 170 | Line line1 = makeLineThrough((endpoints[i%3]->node->getPosition()),(endpoints[(i+1)%3]->node->getPosition())); | 
|---|
| 171 | Line line2 = makeLineThrough((endpoints[(i+2)%3]->node->getPosition()),Intersection); | 
|---|
| 172 | CrossPoint = line1.getIntersection(line2); | 
|---|
| 173 | helper = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition()); | 
|---|
| 174 | CrossPoint -= (endpoints[i%3]->node->getPosition());  // cross point was returned as absolute vector | 
|---|
| 175 | const double s = CrossPoint.ScalarProduct(helper)/helper.NormSquared(); | 
|---|
| 176 | DoLog(1) && (Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl); | 
|---|
| 177 | if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) { | 
|---|
| 178 | DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl); | 
|---|
| 179 | return false; | 
|---|
| 180 | } | 
|---|
| 181 | i++; | 
|---|
| 182 | } while (i < 3); | 
|---|
| 183 | DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl); | 
|---|
| 184 | return true; | 
|---|
| 185 | } | 
|---|
| 186 | catch (MathException &excp) { | 
|---|
| 187 | Log() << Verbose(1) << excp; | 
|---|
| 188 | DoeLog(1) && (eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl); | 
|---|
| 189 | return false; | 
|---|
| 190 | } | 
|---|
| 191 | } | 
|---|
| 192 | ; | 
|---|
| 193 |  | 
|---|
| 194 | /** Finds the point on the triangle to the point \a *x. | 
|---|
| 195 | * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point. | 
|---|
| 196 | * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the | 
|---|
| 197 | * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down. | 
|---|
| 198 | * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not. | 
|---|
| 199 | * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line | 
|---|
| 200 | * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between | 
|---|
| 201 | * the first two basepoints) or not. | 
|---|
| 202 | * \param *x point | 
|---|
| 203 | * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector | 
|---|
| 204 | * \return Distance squared between \a *x and closest point inside triangle | 
|---|
| 205 | */ | 
|---|
| 206 | double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector &x, Vector &ClosestPoint) const | 
|---|
| 207 | { | 
|---|
| 208 | Info FunctionInfo(__func__); | 
|---|
| 209 | Vector Direction; | 
|---|
| 210 |  | 
|---|
| 211 | // 1. get intersection with plane | 
|---|
| 212 | DoLog(1) && (Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << x << "." << endl); | 
|---|
| 213 | GetCenter(Direction); | 
|---|
| 214 | try { | 
|---|
| 215 | Line l = makeLineThrough(x, Direction); | 
|---|
| 216 | ClosestPoint = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(l); | 
|---|
| 217 | } | 
|---|
| 218 | catch (MathException &excp) { | 
|---|
| 219 | (ClosestPoint) = (x); | 
|---|
| 220 | } | 
|---|
| 221 |  | 
|---|
| 222 | // 2. Calculate in plane part of line (x, intersection) | 
|---|
| 223 | Vector InPlane = (x) - (ClosestPoint); // points from plane intersection to straight-down point | 
|---|
| 224 | InPlane.ProjectOntoPlane(NormalVector); | 
|---|
| 225 | InPlane += ClosestPoint; | 
|---|
| 226 |  | 
|---|
| 227 | DoLog(2) && (Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl); | 
|---|
| 228 | DoLog(2) && (Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << x << "." << endl); | 
|---|
| 229 | DoLog(2) && (Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl); | 
|---|
| 230 |  | 
|---|
| 231 | // Calculate cross point between one baseline and the desired point such that distance is shortest | 
|---|
| 232 | double ShortestDistance = -1.; | 
|---|
| 233 | bool InsideFlag = false; | 
|---|
| 234 | Vector CrossDirection[3]; | 
|---|
| 235 | Vector CrossPoint[3]; | 
|---|
| 236 | Vector helper; | 
|---|
| 237 | for (int i = 0; i < 3; i++) { | 
|---|
| 238 | // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point | 
|---|
| 239 | Direction = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition()); | 
|---|
| 240 | // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal); | 
|---|
| 241 | Line l = makeLineThrough((endpoints[i%3]->node->getPosition()), (endpoints[(i+1)%3]->node->getPosition())); | 
|---|
| 242 | CrossPoint[i] = Plane(Direction, InPlane).GetIntersection(l); | 
|---|
| 243 | CrossDirection[i] = CrossPoint[i] - InPlane; | 
|---|
| 244 | CrossPoint[i] -= (endpoints[i%3]->node->getPosition());  // cross point was returned as absolute vector | 
|---|
| 245 | const double s = CrossPoint[i].ScalarProduct(Direction)/Direction.NormSquared(); | 
|---|
| 246 | DoLog(2) && (Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl); | 
|---|
| 247 | if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) { | 
|---|
| 248 | CrossPoint[i] += (endpoints[i%3]->node->getPosition());  // make cross point absolute again | 
|---|
| 249 | DoLog(2) && (Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << endpoints[i % 3]->node->getPosition() << " and " << endpoints[(i + 1) % 3]->node->getPosition() << "." << endl); | 
|---|
| 250 | const double distance = CrossPoint[i].DistanceSquared(x); | 
|---|
| 251 | if ((ShortestDistance < 0.) || (ShortestDistance > distance)) { | 
|---|
| 252 | ShortestDistance = distance; | 
|---|
| 253 | (ClosestPoint) = CrossPoint[i]; | 
|---|
| 254 | } | 
|---|
| 255 | } else | 
|---|
| 256 | CrossPoint[i].Zero(); | 
|---|
| 257 | } | 
|---|
| 258 | InsideFlag = true; | 
|---|
| 259 | for (int i = 0; i < 3; i++) { | 
|---|
| 260 | const double sign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 1) % 3]); | 
|---|
| 261 | const double othersign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 2) % 3]); | 
|---|
| 262 |  | 
|---|
| 263 | if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign | 
|---|
| 264 | InsideFlag = false; | 
|---|
| 265 | } | 
|---|
| 266 | if (InsideFlag) { | 
|---|
| 267 | (ClosestPoint) = InPlane; | 
|---|
| 268 | ShortestDistance = InPlane.DistanceSquared(x); | 
|---|
| 269 | } else { // also check endnodes | 
|---|
| 270 | for (int i = 0; i < 3; i++) { | 
|---|
| 271 | const double distance = x.DistanceSquared(endpoints[i]->node->getPosition()); | 
|---|
| 272 | if ((ShortestDistance < 0.) || (ShortestDistance > distance)) { | 
|---|
| 273 | ShortestDistance = distance; | 
|---|
| 274 | (ClosestPoint) = (endpoints[i]->node->getPosition()); | 
|---|
| 275 | } | 
|---|
| 276 | } | 
|---|
| 277 | } | 
|---|
| 278 | DoLog(1) && (Log() << Verbose(1) << "INFO: Closest Point is " << ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl); | 
|---|
| 279 | return ShortestDistance; | 
|---|
| 280 | } | 
|---|
| 281 | ; | 
|---|
| 282 |  | 
|---|
| 283 | /** Checks whether lines is any of the three boundary lines this triangle contains. | 
|---|
| 284 | * \param *line line to test | 
|---|
| 285 | * \return true - line is of the triangle, false - is not | 
|---|
| 286 | */ | 
|---|
| 287 | bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const | 
|---|
| 288 | { | 
|---|
| 289 | Info FunctionInfo(__func__); | 
|---|
| 290 | for (int i = 0; i < 3; i++) | 
|---|
| 291 | if (line == lines[i]) | 
|---|
| 292 | return true; | 
|---|
| 293 | return false; | 
|---|
| 294 | } | 
|---|
| 295 | ; | 
|---|
| 296 |  | 
|---|
| 297 | /** Checks whether point is any of the three endpoints this triangle contains. | 
|---|
| 298 | * \param *point point to test | 
|---|
| 299 | * \return true - point is of the triangle, false - is not | 
|---|
| 300 | */ | 
|---|
| 301 | bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const | 
|---|
| 302 | { | 
|---|
| 303 | Info FunctionInfo(__func__); | 
|---|
| 304 | for (int i = 0; i < 3; i++) | 
|---|
| 305 | if (point == endpoints[i]) | 
|---|
| 306 | return true; | 
|---|
| 307 | return false; | 
|---|
| 308 | } | 
|---|
| 309 | ; | 
|---|
| 310 |  | 
|---|
| 311 | /** Checks whether point is any of the three endpoints this triangle contains. | 
|---|
| 312 | * \param *point TesselPoint to test | 
|---|
| 313 | * \return true - point is of the triangle, false - is not | 
|---|
| 314 | */ | 
|---|
| 315 | bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const | 
|---|
| 316 | { | 
|---|
| 317 | Info FunctionInfo(__func__); | 
|---|
| 318 | for (int i = 0; i < 3; i++) | 
|---|
| 319 | if (point == endpoints[i]->node) | 
|---|
| 320 | return true; | 
|---|
| 321 | return false; | 
|---|
| 322 | } | 
|---|
| 323 | ; | 
|---|
| 324 |  | 
|---|
| 325 | /** Checks whether three given \a *Points coincide with triangle's endpoints. | 
|---|
| 326 | * \param *Points[3] pointer to BoundaryPointSet | 
|---|
| 327 | * \return true - is the very triangle, false - is not | 
|---|
| 328 | */ | 
|---|
| 329 | bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const | 
|---|
| 330 | { | 
|---|
| 331 | Info FunctionInfo(__func__); | 
|---|
| 332 | DoLog(1) && (Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl); | 
|---|
| 333 | return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2]) | 
|---|
| 334 |  | 
|---|
| 335 | )); | 
|---|
| 336 | } | 
|---|
| 337 | ; | 
|---|
| 338 |  | 
|---|
| 339 | /** Checks whether three given \a *Points coincide with triangle's endpoints. | 
|---|
| 340 | * \param *Points[3] pointer to BoundaryPointSet | 
|---|
| 341 | * \return true - is the very triangle, false - is not | 
|---|
| 342 | */ | 
|---|
| 343 | bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const | 
|---|
| 344 | { | 
|---|
| 345 | Info FunctionInfo(__func__); | 
|---|
| 346 | return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2]) | 
|---|
| 347 |  | 
|---|
| 348 | )); | 
|---|
| 349 | } | 
|---|
| 350 | ; | 
|---|
| 351 |  | 
|---|
| 352 | /** Returns the endpoint which is not contained in the given \a *line. | 
|---|
| 353 | * \param *line baseline defining two endpoints | 
|---|
| 354 | * \return pointer third endpoint or NULL if line does not belong to triangle. | 
|---|
| 355 | */ | 
|---|
| 356 | class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const | 
|---|
| 357 | { | 
|---|
| 358 | Info FunctionInfo(__func__); | 
|---|
| 359 | // sanity check | 
|---|
| 360 | if (!ContainsBoundaryLine(line)) | 
|---|
| 361 | return NULL; | 
|---|
| 362 | for (int i = 0; i < 3; i++) | 
|---|
| 363 | if (!line->ContainsBoundaryPoint(endpoints[i])) | 
|---|
| 364 | return endpoints[i]; | 
|---|
| 365 | // actually, that' impossible :) | 
|---|
| 366 | return NULL; | 
|---|
| 367 | } | 
|---|
| 368 | ; | 
|---|
| 369 |  | 
|---|
| 370 | /** Returns the baseline which does not contain the given boundary point \a *point. | 
|---|
| 371 | * \param *point endpoint which is neither endpoint of the desired line | 
|---|
| 372 | * \return pointer to desired third baseline | 
|---|
| 373 | */ | 
|---|
| 374 | class BoundaryLineSet *BoundaryTriangleSet::GetThirdLine(const BoundaryPointSet * const point) const | 
|---|
| 375 | { | 
|---|
| 376 | Info FunctionInfo(__func__); | 
|---|
| 377 | // sanity check | 
|---|
| 378 | if (!ContainsBoundaryPoint(point)) | 
|---|
| 379 | return NULL; | 
|---|
| 380 | for (int i = 0; i < 3; i++) | 
|---|
| 381 | if (!lines[i]->ContainsBoundaryPoint(point)) | 
|---|
| 382 | return lines[i]; | 
|---|
| 383 | // actually, that' impossible :) | 
|---|
| 384 | return NULL; | 
|---|
| 385 | } | 
|---|
| 386 | ; | 
|---|
| 387 |  | 
|---|
| 388 | /** Calculates the center point of the triangle. | 
|---|
| 389 | * Is third of the sum of all endpoints. | 
|---|
| 390 | * \param *center central point on return. | 
|---|
| 391 | */ | 
|---|
| 392 | void BoundaryTriangleSet::GetCenter(Vector & center) const | 
|---|
| 393 | { | 
|---|
| 394 | Info FunctionInfo(__func__); | 
|---|
| 395 | center.Zero(); | 
|---|
| 396 | for (int i = 0; i < 3; i++) | 
|---|
| 397 | (center) += (endpoints[i]->node->getPosition()); | 
|---|
| 398 | center.Scale(1. / 3.); | 
|---|
| 399 | DoLog(1) && (Log() << Verbose(1) << "INFO: Center is at " << center << "." << endl); | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | /** | 
|---|
| 403 | * gets the Plane defined by the three triangle Basepoints | 
|---|
| 404 | */ | 
|---|
| 405 | Plane BoundaryTriangleSet::getPlane() const{ | 
|---|
| 406 | ASSERT(endpoints[0] && endpoints[1] && endpoints[2], "Triangle not fully defined"); | 
|---|
| 407 |  | 
|---|
| 408 | return Plane(endpoints[0]->node->getPosition(), | 
|---|
| 409 | endpoints[1]->node->getPosition(), | 
|---|
| 410 | endpoints[2]->node->getPosition()); | 
|---|
| 411 | } | 
|---|
| 412 |  | 
|---|
| 413 | Vector BoundaryTriangleSet::getEndpoint(int i) const{ | 
|---|
| 414 | ASSERT(i>=0 && i<3,"Index of Endpoint out of Range"); | 
|---|
| 415 |  | 
|---|
| 416 | return endpoints[i]->node->getPosition(); | 
|---|
| 417 | } | 
|---|
| 418 |  | 
|---|
| 419 | string BoundaryTriangleSet::getEndpointName(int i) const{ | 
|---|
| 420 | ASSERT(i>=0 && i<3,"Index of Endpoint out of Range"); | 
|---|
| 421 |  | 
|---|
| 422 | return endpoints[i]->node->getName(); | 
|---|
| 423 | } | 
|---|
| 424 |  | 
|---|
| 425 | /** output operator for BoundaryTriangleSet. | 
|---|
| 426 | * \param &ost output stream | 
|---|
| 427 | * \param &a boundary triangle | 
|---|
| 428 | */ | 
|---|
| 429 | ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a) | 
|---|
| 430 | { | 
|---|
| 431 | ost << "[" << a.Nr << "|" << a.getEndpointName(0) << "," << a.getEndpointName(1) << "," << a.getEndpointName(2) << "]"; | 
|---|
| 432 | //  ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << "," | 
|---|
| 433 | //      << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]"; | 
|---|
| 434 | return ost; | 
|---|
| 435 | } | 
|---|
| 436 | ; | 
|---|
| 437 |  | 
|---|