/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2021 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* GeneratePotentialsAction.cpp
*
* Created on: May 13, 2021
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
// include headers that implement a archive in simple text format
// and before MemDebug due to placement new
#include
#include
//#include "CodePatterns/MemDebug.hpp"
#include
#include
#include
#include
#include "Actions/PotentialAction/GeneratePotentialsAction.hpp"
#include "CodePatterns/Log.hpp"
#include "Potentials/EmpiricalPotential.hpp"
#include "Potentials/Exceptions.hpp"
#include "Potentials/PotentialFactory.hpp"
#include "Potentials/PotentialRegistry.hpp"
#include "Potentials/PotentialTrainer.hpp"
using namespace MoleCuilder;
// and construct the stuff
#include "GeneratePotentialsAction.def"
#include "Action_impl_pre.hpp"
/** =========== define the function ====================== */
ActionState::ptr PotentialGeneratePotentialsAction::performCall()
{
// fragment specifies the homology fragment to use
SerializablePotential::ParticleTypes_t fragmentnumbers =
PotentialTrainer::getNumbersFromElements(params.fragment.get());
// parse homologies into container
const HomologyContainer &homologies = World::getInstance().getHomologies();
// then we ought to pick the right HomologyGraph ...
const HomologyGraph graph =
PotentialTrainer::getFirstGraphwithSpecifiedElements(homologies,fragmentnumbers);
if (graph != HomologyGraph()) {
LOG(1, "First representative graph containing fragment "
<< fragmentnumbers << " is " << graph << ".");
} else {
STATUS("Specific fragment "+toString(fragmentnumbers)+" not found in homologies!");
return Action::failure;
}
// gather list of potential candidates
std::vector potentials;
if (!params.potential_list.isSet()) {
for (unsigned int i=0; i unique_models_t;
unique_models_t unique_models;
BOOST_FOREACH(std::string &potential_name, potentials) {
unique_models.clear();
/**
* Approach:
* 1. get the number of particle types for the potential
* 2. create all combinations for the given elements and the number of particles
* 3. create the potential
* 4. gather all created potential's binding model in a set
* 5. if the binding model is already contained, discard the potential
* 6. if the binding model is not contained in the fragment's graph, discard it
* 7. if still valid, register potential
*/
// first need to construct potential, then may access it
const enum PotentialTypes potential_type = factory.getTypeForName(potential_name);
EmpiricalPotential const * const defaultPotential = factory.getDefaultPotential(potential_type);
/// 1. get its number of particles
const unsigned int num_particles = defaultPotential->getParticleTypeNumber();
LOG(1, "INFO: Number of particles of " << potential_name << " is " << num_particles);
if (num_particles > fragmentnumbers.size()) {
LOG(2, "DEBUG: Skipping potential " << potential_name << " as " << num_particles
<< " required but fragment has only " << fragmentnumbers.size() << " particles.");
continue;
}
/**
* 2. create all unique combinations for the given elements and the number of particles
*
* Use the {1,...,fragmentnumbers.size()}, create every permutation and pick the first num_particle
* from the given charges. Finally, put all those into a set to retain only unique combinations.
*/
std::set charges_for_potentials;
std::vector selection(boost::counting_iterator(0), boost::counting_iterator(fragmentnumbers.size()));
do {
charges.clear();
for (unsigned int i = 0; i < num_particles; ++i) {
charges.push_back(fragmentnumbers[selection[i]]);
}
// LOG(3, "DEBUG: Inserting charges " << charges);
charges_for_potentials.insert(charges);
} while (std::next_permutation(selection.begin(), selection.end()));
for (std::set::const_iterator iter = charges_for_potentials.begin();
iter != charges_for_potentials.end(); ++iter) {
/// 3. create the potential
EmpiricalPotential* potential = factory.createInstance(potential_name, *iter);
/// 4. Gather all created potential's binding model in a set
std::pair inserter = unique_models.insert(potential->getBindingModel());
/// 5. if the binding model is already contained, discard the potential
if (inserter.second) {
/// 6. if the binding model is not contained in the fragment's graph, discard it
if (graph.contains(potential->getBindingModel().getGraph())) {
/// 7. If still valid, register potential
LOG(2, "DEBUG: Registering potential " << *potential);
registry.registerInstance(potential);
continue;
}
}
LOG(2, "DEBUG: Discarding potential " << *potential);
delete(potential);
}
}
return Action::success;
}
ActionState::ptr PotentialGeneratePotentialsAction::performUndo(ActionState::ptr _state) {
STATUS("Undo of PotentialGeneratePotentialsAction not implemented.");
return Action::failure;
}
ActionState::ptr PotentialGeneratePotentialsAction::performRedo(ActionState::ptr _state){
STATUS("Redo of PotentialGeneratePotentialsAction not implemented.");
return Action::failure;
}
bool PotentialGeneratePotentialsAction::canUndo() {
return false;
}
bool PotentialGeneratePotentialsAction::shouldUndo() {
return false;
}
/** =========== end of function ====================== */