/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2013 Frederik Heber. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * FitPartialChargesAction.cpp * * Created on: Jul 03, 2013 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif // needs to come before MemDebug due to placement new #include #include "CodePatterns/MemDebug.hpp" #include "Atom/atom.hpp" #include "CodePatterns/Log.hpp" #include "Fragmentation/Exporters/ExportGraph_ToFiles.hpp" #include "Fragmentation/Graph.hpp" #include "World.hpp" #include #include #include #include #include #include #include #include #include #include "Actions/PotentialAction/FitPartialChargesAction.hpp" #include "Potentials/PartialNucleiChargeFitter.hpp" #include "AtomIdSet.hpp" #include "Descriptors/AtomIdDescriptor.hpp" #include "Element/element.hpp" #include "Element/periodentafel.hpp" #include "Fragmentation/Homology/AtomFragmentsMap.hpp" #include "Fragmentation/Homology/HomologyContainer.hpp" #include "Fragmentation/Homology/HomologyGraph.hpp" #include "Fragmentation/Summation/SetValues/SamplingGrid.hpp" #include "FunctionApproximation/Extractors.hpp" #include "Potentials/PartialNucleiChargeFitter.hpp" #include "Potentials/Particles/ParticleFactory.hpp" #include "Potentials/Particles/ParticleRegistry.hpp" #include "Potentials/SerializablePotential.hpp" #include "World.hpp" using namespace MoleCuilder; // and construct the stuff #include "FitPartialChargesAction.def" #include "Action_impl_pre.hpp" /** =========== define the function ====================== */ namespace detail { typedef std::map KeysetsToGraph_t; typedef std::map GraphFittedChargeMap_t; typedef std::map fitted_charges_t; typedef std::map GraphIndex_t; typedef std::set AtomsGraphIndices_t; typedef boost::bimaps::bimap< AtomsGraphIndices_t, boost::bimaps::multiset_of > GraphIndices_t; typedef std::map AtomParticleNames_t; typedef std::map, std::string> GraphToNameMap_t; }; static void enforceZeroTotalCharge( PartialNucleiChargeFitter::charges_t &_averaged_charges) { double charge_sum = 0.; charge_sum = std::accumulate(_averaged_charges.begin(), _averaged_charges.end(), charge_sum); if (fabs(charge_sum) > MYEPSILON) { std::transform( _averaged_charges.begin(), _averaged_charges.end(), _averaged_charges.begin(), boost::bind(std::minus(), _1, charge_sum/_averaged_charges.size())); } charge_sum = 0.; charge_sum = std::accumulate(_averaged_charges.begin(), _averaged_charges.end(), charge_sum); ASSERT( fabs(charge_sum) < MYEPSILON, "enforceZeroTotalCharge() - enforcing neutral net charge failed, " +toString(charge_sum)+" is the remaining net charge."); LOG(2, "DEBUG: final charges with net zero charge are " << _averaged_charges); } static size_t obtainAverageChargesOverFragments( PartialNucleiChargeFitter::charges_t &_average_charges, const std::pair< HomologyContainer::const_iterator, HomologyContainer::const_iterator> &_range, const double _radius ) { HomologyContainer::const_iterator iter = _range.first; if (!iter->second.containsGrids) { ELOG(1, "This HomologyGraph does not contain sampled grids."); return 0; } _average_charges.resize(iter->second.fragment.getCharges().size(), 0.); size_t NoFragments = 0; for (; iter != _range.second; ++iter, ++NoFragments) { if (!iter->second.containsGrids) { ELOG(2, "This HomologyGraph does not contain sampled grids,\ndid you forget to add '--store-grids 1' to AnalyseFragmentResults."); return 0; } const Fragment &fragment = iter->second.fragment; // const double &energy = iter->second.energy; // const SamplingGrid &charge = iter->second.charge_distribution; const SamplingGrid &potential = iter->second.potential_distribution; if ((potential.level == 0) || ((potential.begin[0] == potential.end[0]) && (potential.begin[1] == potential.end[1]) && (potential.begin[2] == potential.end[2]))) { ELOG(1, "Sampled grid contains grid made of zero points."); return 0; } // then we extract positions from fragment PartialNucleiChargeFitter::positions_t positions; Fragment::positions_t fragmentpositions = fragment.getPositions(); positions.reserve(fragmentpositions.size()); BOOST_FOREACH( Fragment::position_t pos, fragmentpositions) { positions.push_back( Vector(pos[0], pos[1], pos[2]) ); } PartialNucleiChargeFitter fitter(potential, positions, _radius); fitter(); PartialNucleiChargeFitter::charges_t return_charges = fitter.getSolutionAsCharges_t(); LOG(2, "DEBUG: fitted charges are " << return_charges); std::transform( return_charges.begin(), return_charges.end(), _average_charges.begin(), _average_charges.begin(), std::plus()); } if (NoFragments != 0) std::transform(_average_charges.begin(), _average_charges.end(), _average_charges.begin(), std::bind1st(std::multiplies(),1./(double)NoFragments) ); LOG(2, "DEBUG: final averaged charges are " << _average_charges); return NoFragments; } inline SerializablePotential::ParticleTypes_t getParticleTypesForAtomIdSet(const AtomIdSet &_atoms) { SerializablePotential::ParticleTypes_t particletypes; particletypes.resize(_atoms.size()); std::transform( _atoms.begin(), _atoms.end(), particletypes.begin(), boost::bind(&atom::getElementNo, _1)); return particletypes; } static std::set accumulateKeySetsForAtoms( const AtomFragmentsMap::AtomFragmentsMap_t &_atommap, const std::vector &_selected_atoms) { std::set fragments; for (std::vector::const_iterator iter = _selected_atoms.begin(); iter != _selected_atoms.end(); ++iter) { const atomId_t atomid = (*iter)->getId(); const AtomFragmentsMap::AtomFragmentsMap_t::const_iterator atomiter = _atommap.find(atomid); if ((*iter)->getElementNo() != 1) { if (atomiter == _atommap.end()) { ELOG(2, "There are no fragments associated to " << atomid << "."); continue; } const AtomFragmentsMap::keysets_t &keysets = atomiter->second; LOG(2, "DEBUG: atom " << atomid << " has " << keysets.size() << " fragments."); fragments.insert( keysets.begin(), keysets.end() ); } else { LOG(3, "DEBUG: Skipping atom " << atomid << " as it's hydrogen."); } } return fragments; } static void getKeySetsToGraphMapping( detail::KeysetsToGraph_t &_keyset_graphs, detail::GraphFittedChargeMap_t &_fittedcharges_per_fragment, const std::set &_fragments, const AtomFragmentsMap &_atomfragments) { for (std::set::const_iterator fragmentiter = _fragments.begin(); fragmentiter != _fragments.end(); ++fragmentiter) { const KeySet &keyset = *fragmentiter; const AtomFragmentsMap::indices_t &forceindices = _atomfragments.getFullKeyset(keyset); ASSERT( !forceindices.empty(), "getKeySetsToGraphMapping() - force keyset to "+toString(keyset)+" is empty."); KeySet forcekeyset; forcekeyset.insert(forceindices.begin(), forceindices.end()); forcekeyset.erase(-1); const HomologyGraph graph(forcekeyset); LOG(2, "DEBUG: Associating keyset " << forcekeyset << " with graph " << graph); _keyset_graphs.insert( std::make_pair(keyset, graph) ); _fittedcharges_per_fragment.insert( std::make_pair(graph, PartialNucleiChargeFitter::charges_t()) ); } } static bool getPartialChargesForAllGraphs( detail::GraphFittedChargeMap_t &_fittedcharges_per_fragment, const HomologyContainer &_homologies, const double _mask_radius, const bool enforceZeroCharge) { for (detail::GraphFittedChargeMap_t::iterator graphiter = _fittedcharges_per_fragment.begin(); graphiter != _fittedcharges_per_fragment.end(); ++graphiter) { const HomologyGraph &graph = graphiter->first; LOG(2, "DEBUG: Now fitting charges to graph " << graph); const HomologyContainer::range_t range = _homologies.getHomologousGraphs(graph); if (range.first == range.second) { ELOG(0, "HomologyContainer does not contain specified fragment."); return false; } // fit and average partial charges over all homologous fragments PartialNucleiChargeFitter::charges_t &averaged_charges = graphiter->second; const size_t NoFragments = obtainAverageChargesOverFragments(averaged_charges, range, _mask_radius); if ((NoFragments == 0) && (range.first != range.second)) { ELOG(0, "Fitting for fragment "+toString(*graphiter)+" failed."); return false; } // make sum of charges zero if desired if (enforceZeroCharge) enforceZeroTotalCharge(averaged_charges); // output status info fitted charges LOG(2, "DEBUG: For fragment " << *graphiter << " we have fitted the following charges " << averaged_charges << ", averaged over " << NoFragments << " fragments."); } return true; } double fitAverageChargeToAtom( const atom * const _walker, const AtomFragmentsMap &_atomfragments, const detail::KeysetsToGraph_t &_keyset_graphs, const detail::GraphFittedChargeMap_t &_fittedcharges_per_fragment) { const atom * surrogate = _walker; if (surrogate->getElementNo() == 1) { // it's hydrogen, check its bonding and use its bond partner instead to request // keysets const BondList &ListOfBonds = surrogate->getListOfBonds(); if ( ListOfBonds.size() != 1) { ELOG(1, "Solitary hydrogen in atom " << surrogate->getId() << " detected, skipping."); return 0.; } surrogate = (*ListOfBonds.begin())->GetOtherAtom(surrogate); } const atomId_t walkerid = surrogate->getId(); const AtomFragmentsMap::AtomFragmentsMap_t &atommap = _atomfragments.getMap(); const AtomFragmentsMap::AtomFragmentsMap_t::const_iterator keysetsiter = atommap.find(walkerid); ASSERT(keysetsiter != atommap.end(), "fitAverageChargeToAtom() - we checked already that "+toString(walkerid) +" should be present!"); const AtomFragmentsMap::keysets_t & keysets = keysetsiter->second; double average_charge = 0.; size_t NoFragments = 0; // go over all fragments associated to this atom for (AtomFragmentsMap::keysets_t::const_iterator keysetsiter = keysets.begin(); keysetsiter != keysets.end(); ++keysetsiter) { const KeySet &keyset = *keysetsiter; const AtomFragmentsMap::indices_t &forcekeyset = _atomfragments.getFullKeyset(keyset); ASSERT( !forcekeyset.empty(), "fitAverageChargeToAtom() - force keyset to "+toString(keyset)+" is empty."); // find the associated charge in the charge vector const std::map::const_iterator keysetgraphiter = _keyset_graphs.find(keyset); ASSERT( keysetgraphiter != _keyset_graphs.end(), "fitAverageChargeToAtom() - keyset "+toString(keyset) +" not contained in keyset_graphs."); const HomologyGraph &graph = keysetgraphiter->second; const detail::GraphFittedChargeMap_t::const_iterator chargesiter = _fittedcharges_per_fragment.find(graph); ASSERT(chargesiter != _fittedcharges_per_fragment.end(), "fitAverageChargeToAtom() - no charge to "+toString(keyset) +" any longer present in fittedcharges_per_fragment?"); const PartialNucleiChargeFitter::charges_t &charges = chargesiter->second; ASSERT( charges.size() == forcekeyset.size(), "fitAverageChargeToAtom() - charges "+toString(charges.size())+" and keyset " +toString(forcekeyset.size())+" do not have the same length?"); PartialNucleiChargeFitter::charges_t::const_iterator chargeiter = charges.begin(); const AtomFragmentsMap::indices_t::const_iterator forcekeysetiter = std::find(forcekeyset.begin(), forcekeyset.end(), _walker->getId()); ASSERT( forcekeysetiter != forcekeyset.end(), "fitAverageChargeToAtom() - atom "+toString(_walker->getId()) +" not contained in force keyset "+toString(forcekeyset)); std::advance(chargeiter, std::distance(forcekeyset.begin(), forcekeysetiter)); // and add onto charge sum const double & charge_in_fragment = *chargeiter; average_charge += charge_in_fragment; ++NoFragments; } // average to obtain final partial charge for this atom average_charge *= 1./(double)NoFragments; return average_charge; } void addToParticleRegistry( const ParticleFactory &factory, const periodentafel &periode, const detail::fitted_charges_t &_fitted_charges, const detail::GraphIndices_t &_GraphIndices, detail::AtomParticleNames_t &_atom_particlenames) { detail::GraphToNameMap_t GraphToNameMap; for (detail::fitted_charges_t::const_iterator chargeiter = _fitted_charges.begin(); chargeiter != _fitted_charges.end(); ++chargeiter) { const atomId_t &atomid = chargeiter->first; const detail::GraphIndices_t::right_const_iterator graphiter = _GraphIndices.right.find(atomid); const detail::GraphToNameMap_t::const_iterator nameiter = GraphToNameMap.find(graphiter->second); std::string name; if (nameiter != GraphToNameMap.end()) { name = nameiter->second; } else { const atom * const walker = World::getInstance().getAtom(AtomById(atomid)); ASSERT( walker != NULL, "addToParticleRegistry() - atom "+toString(atomid)+" not present in the World?"); const double &charge = chargeiter->second; const atomicNumber_t elementno = walker->getElementNo(); name = Particle::findFreeName(periode, elementno); GraphToNameMap[graphiter->second] = name; LOG(1, "INFO: Adding particle " << name << " for atom " << *walker << " with element " << elementno << ", charge " << charge); factory.createInstance(name, elementno, charge); } _atom_particlenames.insert( std::make_pair(atomid, name) ); } } ActionState::ptr PotentialFitPartialChargesAction::performCall() { // check for selected atoms const World &world = const_cast(World::getInstance()); if (world.beginAtomSelection() == world.endAtomSelection()) { STATUS("There are no atoms selected for fitting partial charges to."); return Action::failure; } /// obtain possible fragments to each selected atom const AtomFragmentsMap &atomfragments = AtomFragmentsMap::getConstInstance(); if (!atomfragments.checkCompleteness()) { STATUS("AtomFragmentsMap failed internal consistency check, missing forcekeysets?"); return Action::failure; } std::set fragments = accumulateKeySetsForAtoms( atomfragments.getMap(), world.getSelectedAtoms()); // reduce given fragments to homologous graphs to avoid multiple fittings detail::KeysetsToGraph_t keyset_graphs; detail::GraphFittedChargeMap_t fittedcharges_per_fragment; getKeySetsToGraphMapping(keyset_graphs, fittedcharges_per_fragment, fragments, atomfragments); /// then go through all fragments and get partial charges for each const HomologyContainer &homologies = World::getInstance().getHomologies(); const bool status = getPartialChargesForAllGraphs( fittedcharges_per_fragment, homologies, params.radius.get(), params.enforceZeroCharge.get()); if (!status) return Action::failure; /// obtain average charge for each atom the fitted charges over all its fragments detail::fitted_charges_t fitted_charges; for (World::AtomSelectionConstIterator atomiter = world.beginAtomSelection(); atomiter != world.endAtomSelection(); ++atomiter) { const double average_charge = fitAverageChargeToAtom( atomiter->second, atomfragments, keyset_graphs, fittedcharges_per_fragment); if (average_charge != 0.) { LOG(2, "DEBUG: For atom " << atomiter->first << " we have an average charge of " << average_charge); fitted_charges.insert( std::make_pair(atomiter->first, average_charge) ); } } /// make Particles be used for every atom that was fitted on the same number of graphs detail::GraphIndex_t GraphIndex; size_t index = 0; for (HomologyContainer::const_key_iterator iter = homologies.key_begin(); iter != homologies.key_end(); iter = homologies.getNextKey(iter)) { GraphIndex.insert( std::make_pair( *iter, index++)); } LOG(2, "DEBUG: There are " << index << " unique graphs in the homology container."); // go through every atom, get all graphs, convert to GraphIndex and store detail::GraphIndices_t GraphIndices; const AtomFragmentsMap::AtomFragmentsMap_t &atommap = atomfragments.getMap(); for (World::AtomSelectionConstIterator atomiter = world.beginAtomSelection(); atomiter != world.endAtomSelection(); ++atomiter) { const atomId_t walkerid = atomiter->first; const AtomFragmentsMap::AtomFragmentsMap_t::const_iterator keysetsiter = atommap.find(walkerid); ASSERT(keysetsiter != atommap.end(), "PotentialFitPartialChargesAction::performCall() - we checked already that " +toString(walkerid)+" should be present!"); const AtomFragmentsMap::keysets_t & keysets = keysetsiter->second; detail::AtomsGraphIndices_t AtomsGraphIndices; // go over all fragments associated to this atom for (AtomFragmentsMap::keysets_t::const_iterator keysetsiter = keysets.begin(); keysetsiter != keysets.end(); ++keysetsiter) { const KeySet &keyset = *keysetsiter; const std::map::const_iterator keysetgraphiter = keyset_graphs.find(keyset); ASSERT( keysetgraphiter != keyset_graphs.end(), "PotentialFitPartialChargesAction::performCall() - keyset "+toString(keyset) +" not contained in keyset_graphs."); const HomologyGraph &graph = keysetgraphiter->second; const detail::GraphIndex_t::const_iterator indexiter = GraphIndex.find(graph); ASSERT( indexiter != GraphIndex.end(), "PotentialFitPartialChargesAction::performCall() - graph "+toString(graph) +" not contained in GraphIndex."); AtomsGraphIndices.insert( indexiter->second ); } GraphIndices.left.insert( std::make_pair(AtomsGraphIndices, walkerid) ); LOG(2, "DEBUG: Atom " << *atomiter->second << " has graph indices " << AtomsGraphIndices); } /// place all fitted charges into ParticleRegistry detail::AtomParticleNames_t atom_particlenames; addToParticleRegistry( ParticleFactory::getConstInstance(), *World::getInstance().getPeriode(), fitted_charges, GraphIndices, atom_particlenames); LOG(1, "INFO: The atoms received the following particles " << atom_particlenames); return Action::success; } ActionState::ptr PotentialFitPartialChargesAction::performUndo(ActionState::ptr _state) { return Action::success; } ActionState::ptr PotentialFitPartialChargesAction::performRedo(ActionState::ptr _state){ return Action::success; } bool PotentialFitPartialChargesAction::canUndo() { return false; } bool PotentialFitPartialChargesAction::shouldUndo() { return false; } /** =========== end of function ====================== */