[0b990d] | 1 | //
|
---|
| 2 | // pointgrp.h
|
---|
| 3 | //
|
---|
| 4 | // Modifications are
|
---|
| 5 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 6 | //
|
---|
| 7 | // Author: Edward Seidl <seidl@janed.com>
|
---|
| 8 | // Maintainer: LPS
|
---|
| 9 | //
|
---|
| 10 | // This file is part of the SC Toolkit.
|
---|
| 11 | //
|
---|
| 12 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 13 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 14 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 15 | // any later version.
|
---|
| 16 | //
|
---|
| 17 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 18 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 19 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 20 | // GNU Library General Public License for more details.
|
---|
| 21 | //
|
---|
| 22 | // You should have received a copy of the GNU Library General Public License
|
---|
| 23 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 24 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 25 | //
|
---|
| 26 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 27 | //
|
---|
| 28 |
|
---|
| 29 | /* pointgrp.h -- definition of the point group classes
|
---|
| 30 | *
|
---|
| 31 | * THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A
|
---|
| 32 | * "UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE
|
---|
| 33 | * AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT
|
---|
| 34 | * CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE
|
---|
| 35 | * PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO
|
---|
| 36 | * RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY.
|
---|
| 37 | *
|
---|
| 38 | * Author:
|
---|
| 39 | * E. T. Seidl
|
---|
| 40 | * Bldg. 12A, Rm. 2033
|
---|
| 41 | * Computer Systems Laboratory
|
---|
| 42 | * Division of Computer Research and Technology
|
---|
| 43 | * National Institutes of Health
|
---|
| 44 | * Bethesda, Maryland 20892
|
---|
| 45 | * Internet: seidl@alw.nih.gov
|
---|
| 46 | * June, 1993
|
---|
| 47 | */
|
---|
| 48 |
|
---|
| 49 | #ifdef __GNUC__
|
---|
| 50 | #pragma interface
|
---|
| 51 | #endif
|
---|
| 52 |
|
---|
| 53 | #ifndef _math_symmetry_pointgrp_h
|
---|
| 54 | #define _math_symmetry_pointgrp_h
|
---|
| 55 |
|
---|
| 56 | #include <iostream>
|
---|
| 57 |
|
---|
| 58 | #include <util/class/class.h>
|
---|
| 59 | #include <util/state/state.h>
|
---|
| 60 | #include <util/keyval/keyval.h>
|
---|
| 61 | #include <math/scmat/vector3.h>
|
---|
| 62 |
|
---|
| 63 | namespace sc {
|
---|
| 64 |
|
---|
| 65 | // //////////////////////////////////////////////////////////////////
|
---|
| 66 |
|
---|
| 67 | /** The SymmetryOperation class provides a 3 by 3 matrix
|
---|
| 68 | representation of a symmetry operation, such as a rotation or reflection.
|
---|
| 69 | */
|
---|
| 70 | class SymmetryOperation {
|
---|
| 71 | private:
|
---|
| 72 | double d[3][3];
|
---|
| 73 |
|
---|
| 74 | public:
|
---|
| 75 | SymmetryOperation();
|
---|
| 76 | SymmetryOperation(const SymmetryOperation &);
|
---|
| 77 | ~SymmetryOperation();
|
---|
| 78 |
|
---|
| 79 | /// returns the trace of the transformation matrix
|
---|
| 80 | double trace() const { return d[0][0]+d[1][1]+d[2][2]; }
|
---|
| 81 |
|
---|
| 82 | /// returns the i'th row of the transformation matrix
|
---|
| 83 | double* operator[](int i) { return d[i]; }
|
---|
| 84 |
|
---|
| 85 | /// const version of the above
|
---|
| 86 | const double* operator[](int i) const { return d[i]; }
|
---|
| 87 |
|
---|
| 88 | /** returns a reference to the (i,j)th element of the transformation
|
---|
| 89 | matrix */
|
---|
| 90 | double& operator()(int i, int j) { return d[i][j]; }
|
---|
| 91 |
|
---|
| 92 | /// const version of the above
|
---|
| 93 | double operator()(int i, int j) const { return d[i][j]; }
|
---|
| 94 |
|
---|
| 95 | /// zero out the symop
|
---|
| 96 | void zero() { memset(d,0,sizeof(double)*9); }
|
---|
| 97 |
|
---|
| 98 | /// This operates on this with r (i.e. return r * this).
|
---|
| 99 | SymmetryOperation operate(const SymmetryOperation& r) const;
|
---|
| 100 |
|
---|
| 101 | /// This performs the transform r * this * r~
|
---|
| 102 | SymmetryOperation transform(const SymmetryOperation& r) const;
|
---|
| 103 |
|
---|
| 104 | /// Set equal to a unit matrix
|
---|
| 105 | void unit() { zero(); d[0][0] = d[1][1] = d[2][2] = 1.0; }
|
---|
| 106 |
|
---|
| 107 | /// Set equal to E
|
---|
| 108 | void E() { unit(); }
|
---|
| 109 |
|
---|
| 110 | /// Set equal to an inversion
|
---|
| 111 | void i() { zero(); d[0][0] = d[1][1] = d[2][2] = -1.0; }
|
---|
| 112 |
|
---|
| 113 | /// Set equal to reflection in xy plane
|
---|
| 114 | void sigma_h() { unit(); d[2][2] = -1.0; }
|
---|
| 115 |
|
---|
| 116 | /// Set equal to reflection in xz plane
|
---|
| 117 | void sigma_xz() { unit(); d[1][1] = -1.0; }
|
---|
| 118 |
|
---|
| 119 | /// Set equal to reflection in yz plane
|
---|
| 120 | void sigma_yz() { unit(); d[0][0] = -1.0; }
|
---|
| 121 |
|
---|
| 122 | /// Set equal to a clockwise rotation by 2pi/n
|
---|
| 123 | void rotation(int n);
|
---|
| 124 | void rotation(double theta);
|
---|
| 125 |
|
---|
| 126 | /// Set equal to C2 about the x axis
|
---|
| 127 | void c2_x() { i(); d[0][0] = 1.0; }
|
---|
| 128 |
|
---|
| 129 | /// Set equal to C2 about the x axis
|
---|
| 130 | void c2_y() { i(); d[1][1] = 1.0; }
|
---|
| 131 |
|
---|
| 132 | void transpose();
|
---|
| 133 |
|
---|
| 134 | /// print the matrix
|
---|
| 135 | void print(std::ostream& =ExEnv::out0()) const;
|
---|
| 136 | };
|
---|
| 137 |
|
---|
| 138 | // //////////////////////////////////////////////////////////////////
|
---|
| 139 |
|
---|
| 140 | /** The SymRep class provides an n dimensional matrix representation of a
|
---|
| 141 | symmetry operation, such as a rotation or reflection. The trace of a
|
---|
| 142 | SymRep can be used as the character for that symmetry operation. d is
|
---|
| 143 | hardwired to 5x5 since the H irrep in Ih is 5 dimensional.
|
---|
| 144 | */
|
---|
| 145 | class SymRep {
|
---|
| 146 | private:
|
---|
| 147 | int n;
|
---|
| 148 | double d[5][5];
|
---|
| 149 |
|
---|
| 150 | public:
|
---|
| 151 | SymRep(int =0);
|
---|
| 152 | SymRep(const SymmetryOperation&);
|
---|
| 153 | ~SymRep();
|
---|
| 154 |
|
---|
| 155 | /// Cast to a SymmetryOperation.
|
---|
| 156 | operator SymmetryOperation() const;
|
---|
| 157 |
|
---|
| 158 | /// returns the trace of the transformation matrix
|
---|
| 159 | inline double trace() const;
|
---|
| 160 |
|
---|
| 161 | /// set the dimension of d
|
---|
| 162 | void set_dim(int i) { n=i; }
|
---|
| 163 |
|
---|
| 164 | /// returns the i'th row of the transformation matrix
|
---|
| 165 | double* operator[](int i) { return d[i]; }
|
---|
| 166 | /// const version of the above
|
---|
| 167 | const double* operator[](int i) const { return d[i]; }
|
---|
| 168 |
|
---|
| 169 | /** returns a reference to the (i,j)th element of the transformation
|
---|
| 170 | matrix */
|
---|
| 171 | double& operator()(int i, int j) { return d[i][j]; }
|
---|
| 172 | /// const version of double& operator()(int i, int j)
|
---|
| 173 | double operator()(int i, int j) const { return d[i][j]; }
|
---|
| 174 |
|
---|
| 175 | /// zero out the symop
|
---|
| 176 | void zero() { memset(d,0,sizeof(double)*25); }
|
---|
| 177 |
|
---|
| 178 | /// This operates on this with r (i.e. return r * this).
|
---|
| 179 | SymRep operate(const SymRep& r) const;
|
---|
| 180 |
|
---|
| 181 | /// This performs the transform r * this * r~
|
---|
| 182 | SymRep transform(const SymRep& r) const;
|
---|
| 183 |
|
---|
| 184 | /// Set equal to a unit matrix
|
---|
| 185 | void unit() {
|
---|
| 186 | zero(); d[0][0] = d[1][1] = d[2][2] = d[3][3] = d[4][4] = 1.0;
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | /// Set equal to the identity
|
---|
| 190 | void E() { unit(); }
|
---|
| 191 |
|
---|
| 192 | /// Set equal to an inversion
|
---|
| 193 | void i() { zero(); d[0][0] = d[1][1] = d[2][2] = d[3][3] = d[4][4] = -1.0;}
|
---|
| 194 |
|
---|
| 195 | /// Set equal to reflection in xy plane
|
---|
| 196 | void sigma_h();
|
---|
| 197 |
|
---|
| 198 | /// Set equal to reflection in xz plane
|
---|
| 199 | void sigma_xz();
|
---|
| 200 |
|
---|
| 201 | /// Set equal to reflection in yz plane
|
---|
| 202 | void sigma_yz();
|
---|
| 203 |
|
---|
| 204 | /// Set equal to a clockwise rotation by 2pi/n
|
---|
| 205 | void rotation(int n);
|
---|
| 206 | void rotation(double theta);
|
---|
| 207 |
|
---|
| 208 | /// Set equal to C2 about the x axis
|
---|
| 209 | void c2_x();
|
---|
| 210 |
|
---|
| 211 | /// Set equal to C2 about the x axis
|
---|
| 212 | void c2_y();
|
---|
| 213 |
|
---|
| 214 | /// print the matrix
|
---|
| 215 | void print(std::ostream& =ExEnv::out0()) const;
|
---|
| 216 | };
|
---|
| 217 |
|
---|
| 218 | inline double
|
---|
| 219 | SymRep::trace() const
|
---|
| 220 | {
|
---|
| 221 | double r=0;
|
---|
| 222 | for (int i=0; i < n; i++)
|
---|
| 223 | r += d[i][i];
|
---|
| 224 | return r;
|
---|
| 225 | }
|
---|
| 226 |
|
---|
| 227 | // //////////////////////////////////////////////////////////////////
|
---|
| 228 |
|
---|
| 229 |
|
---|
| 230 | class CharacterTable;
|
---|
| 231 |
|
---|
| 232 | /** The IrreducibleRepresentation class provides information associated
|
---|
| 233 | with a particular irreducible representation of a point group. This
|
---|
| 234 | includes the Mulliken symbol for the irrep, the degeneracy of the
|
---|
| 235 | irrep, the characters which represent the irrep, and the number of
|
---|
| 236 | translations and rotations in the irrep. The order of the point group
|
---|
| 237 | is also provided (this is equal to the number of characters in an
|
---|
| 238 | irrep). */
|
---|
| 239 | class IrreducibleRepresentation {
|
---|
| 240 | friend class CharacterTable;
|
---|
| 241 |
|
---|
| 242 | private:
|
---|
| 243 | int g; // the order of the group
|
---|
| 244 | int degen; // the degeneracy of the irrep
|
---|
| 245 | int nrot_; // the number of rotations in this irrep
|
---|
| 246 | int ntrans_; // the number of translations in this irrep
|
---|
| 247 | int complex_; // true if this irrep has a complex representation
|
---|
| 248 | char *symb; // mulliken symbol for this irrep
|
---|
| 249 | char *csymb; // mulliken symbol for this irrep w/o special characters
|
---|
| 250 |
|
---|
| 251 | SymRep *rep; // representation matrices for the symops
|
---|
| 252 |
|
---|
| 253 | public:
|
---|
| 254 | IrreducibleRepresentation();
|
---|
| 255 | IrreducibleRepresentation(const IrreducibleRepresentation&);
|
---|
| 256 | /** This constructor takes as arguments the order of the point group,
|
---|
| 257 | the degeneracy of the irrep, and the Mulliken symbol of the irrep.
|
---|
| 258 | The Mulliken symbol is copied internally. */
|
---|
| 259 | IrreducibleRepresentation(int,int,const char*,const char* =0);
|
---|
| 260 |
|
---|
| 261 | ~IrreducibleRepresentation();
|
---|
| 262 |
|
---|
| 263 | IrreducibleRepresentation& operator=(const IrreducibleRepresentation&);
|
---|
| 264 |
|
---|
| 265 | /// Initialize the order, degeneracy, and Mulliken symbol of the irrep.
|
---|
| 266 | void init(int =0, int =0, const char* =0, const char* =0);
|
---|
| 267 |
|
---|
| 268 | /// Returns the order of the group.
|
---|
| 269 | int order() const { return g; }
|
---|
| 270 |
|
---|
| 271 | /// Returns the degeneracy of the irrep.
|
---|
| 272 | int degeneracy() const { return degen; }
|
---|
| 273 |
|
---|
| 274 | /// Returns the value of complex_.
|
---|
| 275 | int complex() const { return complex_; }
|
---|
| 276 |
|
---|
| 277 | /// Returns the number of projection operators for the irrep.
|
---|
| 278 | int nproj() const { return degen*degen; }
|
---|
| 279 |
|
---|
| 280 | /// Returns the number of rotations associated with the irrep.
|
---|
| 281 | int nrot() const { return nrot_; }
|
---|
| 282 |
|
---|
| 283 | /// Returns the number of translations associated with the irrep.
|
---|
| 284 | int ntrans() const { return ntrans_; }
|
---|
| 285 |
|
---|
| 286 | /// Returns the Mulliken symbol for the irrep.
|
---|
| 287 | const char * symbol() const { return symb; }
|
---|
| 288 |
|
---|
| 289 | /** Returns the Mulliken symbol for the irrep without special
|
---|
| 290 | characters.
|
---|
| 291 | */
|
---|
| 292 | const char * symbol_ns() const { return (csymb?csymb:symb); }
|
---|
| 293 |
|
---|
| 294 | /** Returns the character for the i'th symmetry operation of the point
|
---|
| 295 | group. */
|
---|
| 296 | double character(int i) const {
|
---|
| 297 | return complex_ ? 0.5*rep[i].trace() : rep[i].trace();
|
---|
| 298 | }
|
---|
| 299 |
|
---|
| 300 | /// Returns the element (x1,x2) of the i'th representation matrix.
|
---|
| 301 | double p(int x1, int x2, int i) const { return rep[i](x1,x2); }
|
---|
| 302 |
|
---|
| 303 | /** Returns the character for the d'th contribution to the i'th
|
---|
| 304 | representation matrix. */
|
---|
| 305 | double p(int d, int i) const {
|
---|
| 306 | int dc=d/degen; int dr=d%degen;
|
---|
| 307 | return rep[i](dr,dc);
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | /** This prints the irrep to the given file, or stdout if none is
|
---|
| 311 | given. The second argument is an optional string of spaces to offset
|
---|
| 312 | by. */
|
---|
| 313 | void print(std::ostream& =ExEnv::out0()) const;
|
---|
| 314 | };
|
---|
| 315 |
|
---|
| 316 | // ///////////////////////////////////////////////////////////
|
---|
| 317 | /** The CharacterTable class provides a workable character table
|
---|
| 318 | for all of the non-cubic point groups. While I have tried to match the
|
---|
| 319 | ordering in Cotton's book, I don't guarantee that it is always followed.
|
---|
| 320 | It shouldn't matter anyway. Also note that I don't lump symmetry
|
---|
| 321 | operations of the same class together. For example, in C3v there are two
|
---|
| 322 | distinct C3 rotations and 3 distinct reflections, each with a separate
|
---|
| 323 | character. Thus symop has 6 elements rather than the 3 you'll find in
|
---|
| 324 | most published character tables. */
|
---|
| 325 | class CharacterTable {
|
---|
| 326 | public:
|
---|
| 327 | enum pgroups {C1, CS, CI, CN, CNV, CNH, DN, DND, DNH, SN, T, TH, TD, O,
|
---|
| 328 | OH, I, IH};
|
---|
| 329 |
|
---|
| 330 | private:
|
---|
| 331 | int g; // the order of the point group
|
---|
| 332 | int nt; // order of the princ rot axis
|
---|
| 333 | pgroups pg; // the class of the point group
|
---|
| 334 | int nirrep_; // the number of irreps in this pg
|
---|
| 335 | IrreducibleRepresentation *gamma_; // an array of irreps
|
---|
| 336 | SymmetryOperation *symop; // the matrices describing sym ops
|
---|
| 337 | int *_inv; // index of the inverse symop
|
---|
| 338 | char *symb; // the Schoenflies symbol for the pg
|
---|
| 339 |
|
---|
| 340 | /// this determines what type of point group we're dealing with
|
---|
| 341 | int parse_symbol();
|
---|
| 342 | /// this fills in the irrep and symop arrays.
|
---|
| 343 | int make_table();
|
---|
| 344 |
|
---|
| 345 | // these create the character tables for the cubic groups
|
---|
| 346 | void t();
|
---|
| 347 | void th();
|
---|
| 348 | void td();
|
---|
| 349 | void o();
|
---|
| 350 | void oh();
|
---|
| 351 | void i();
|
---|
| 352 | void ih();
|
---|
| 353 |
|
---|
| 354 | public:
|
---|
| 355 | CharacterTable();
|
---|
| 356 | /** This constructor takes the Schoenflies symbol of a point group as
|
---|
| 357 | input. */
|
---|
| 358 | CharacterTable(const char*);
|
---|
| 359 | /** This is like the above, but it also takes a reference to a
|
---|
| 360 | SymmetryOperation which is the frame of reference. All symmetry
|
---|
| 361 | operations are transformed to this frame of reference. */
|
---|
| 362 | CharacterTable(const char*,const SymmetryOperation&);
|
---|
| 363 |
|
---|
| 364 | CharacterTable(const CharacterTable&);
|
---|
| 365 | ~CharacterTable();
|
---|
| 366 |
|
---|
| 367 | CharacterTable& operator=(const CharacterTable&);
|
---|
| 368 |
|
---|
| 369 | /// Returns the number of irreps.
|
---|
| 370 | int nirrep() const { return nirrep_; }
|
---|
| 371 | /// Returns the order of the point group
|
---|
| 372 | int order() const { return g; }
|
---|
| 373 | /// Returns the Schoenflies symbol for the point group
|
---|
| 374 | const char * symbol() const { return symb; }
|
---|
| 375 | /// Returns the i'th irrep.
|
---|
| 376 | IrreducibleRepresentation& gamma(int i) { return gamma_[i]; }
|
---|
| 377 | /// Returns the i'th symmetry operation.
|
---|
| 378 | SymmetryOperation& symm_operation(int i) { return symop[i]; }
|
---|
| 379 |
|
---|
| 380 | /** Cn, Cnh, Sn, T, and Th point groups have complex representations.
|
---|
| 381 | This function returns 1 if the point group has a complex
|
---|
| 382 | representation, 0 otherwise. */
|
---|
| 383 | int complex() const {
|
---|
| 384 | if (pg==CN || pg==SN || pg==CNH || pg==T || pg==TH)
|
---|
| 385 | return 1;
|
---|
| 386 | return 0;
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | /// Returns the index of the symop which is the inverse of symop[i].
|
---|
| 390 | int inverse(int i) const { return _inv[i]; }
|
---|
| 391 |
|
---|
| 392 | int ncomp() const {
|
---|
| 393 | int ret=0;
|
---|
| 394 | for (int i=0; i < nirrep_; i++) {
|
---|
| 395 | int nc = (gamma_[i].complex()) ? 1 : gamma_[i].degen;
|
---|
| 396 | ret += nc;
|
---|
| 397 | }
|
---|
| 398 | return ret;
|
---|
| 399 | }
|
---|
| 400 |
|
---|
| 401 | /// Returns the irrep component i belongs to.
|
---|
| 402 | int which_irrep(int i) {
|
---|
| 403 | for (int ir=0, cn=0; ir < nirrep_; ir++) {
|
---|
| 404 | int nc = (gamma_[ir].complex()) ? 1 : gamma_[ir].degen;
|
---|
| 405 | for (int c=0; c < nc; c++,cn++)
|
---|
| 406 | if (cn==i)
|
---|
| 407 | return ir;
|
---|
| 408 | }
|
---|
| 409 | return -1;
|
---|
| 410 | }
|
---|
| 411 |
|
---|
| 412 | /// Returns which component i is.
|
---|
| 413 | int which_comp(int i) {
|
---|
| 414 | for (int ir=0, cn=0; ir < nirrep_; ir++) {
|
---|
| 415 | int nc = (gamma_[ir].complex()) ? 1 : gamma_[ir].degen;
|
---|
| 416 | for (int c=0; c < nc; c++,cn++)
|
---|
| 417 | if (cn==i)
|
---|
| 418 | return c;
|
---|
| 419 | }
|
---|
| 420 | return -1;
|
---|
| 421 | }
|
---|
| 422 |
|
---|
| 423 | /// This prints the irrep to the given file, or stdout if none is given.
|
---|
| 424 | void print(std::ostream& =ExEnv::out0()) const;
|
---|
| 425 | };
|
---|
| 426 |
|
---|
| 427 | // ///////////////////////////////////////////////////////////
|
---|
| 428 |
|
---|
| 429 | /** The PointGroup class is really a place holder for a CharacterTable. It
|
---|
| 430 | contains a string representation of the Schoenflies symbol of a point
|
---|
| 431 | group, a frame of reference for the symmetry operation transformation
|
---|
| 432 | matrices, and a point of origin. The origin is not respected by the
|
---|
| 433 | symmetry operations, so if you want to use a point group with a nonzero
|
---|
| 434 | origin, first translate all your coordinates to the origin and then set
|
---|
| 435 | the origin to zero. */
|
---|
| 436 | class PointGroup: public SavableState {
|
---|
| 437 | private:
|
---|
| 438 | char *symb;
|
---|
| 439 | SymmetryOperation frame;
|
---|
| 440 | SCVector3 origin_;
|
---|
| 441 |
|
---|
| 442 | public:
|
---|
| 443 | PointGroup();
|
---|
| 444 | /** This constructor takes a string containing the Schoenflies symbol
|
---|
| 445 | of the point group as its only argument. */
|
---|
| 446 | PointGroup(const char*);
|
---|
| 447 | /** Like the above, but this constructor also takes a frame of reference
|
---|
| 448 | as an argument. */
|
---|
| 449 | PointGroup(const char*,SymmetryOperation&);
|
---|
| 450 | /** Like the above, but this constructor also takes a point of origin
|
---|
| 451 | as an argument. */
|
---|
| 452 | PointGroup(const char*,SymmetryOperation&,const SCVector3&);
|
---|
| 453 | /** The PointGroup KeyVal constructor looks for three keywords:
|
---|
| 454 | symmetry, symmetry_frame, and origin. symmetry is a string
|
---|
| 455 | containing the Schoenflies symbol of the point group. origin is an
|
---|
| 456 | array of doubles which gives the x, y, and z coordinates of the
|
---|
| 457 | origin of the symmetry frame. symmetry_frame is a 3 by 3 array of
|
---|
| 458 | arrays of doubles which specify the principal axes for the
|
---|
| 459 | transformation matrices as a unitary rotation.
|
---|
| 460 |
|
---|
| 461 | For example, a simple input which will use the default origin and
|
---|
| 462 | symmetry_frame ((0,0,0) and the unit matrix, respectively), might
|
---|
| 463 | look like this:
|
---|
| 464 |
|
---|
| 465 | <pre>
|
---|
| 466 | pointgrp<PointGroup>: (
|
---|
| 467 | symmetry = "c2v"
|
---|
| 468 | )
|
---|
| 469 | </pre>
|
---|
| 470 |
|
---|
| 471 | By default, the principal rotation axis is taken to be the z axis.
|
---|
| 472 | If you already have a set of coordinates which assume that the
|
---|
| 473 | rotation axis is the x axis, then you'll have to rotate your frame
|
---|
| 474 | of reference with symmetry_frame:
|
---|
| 475 |
|
---|
| 476 | <pre>
|
---|
| 477 | pointgrp<PointGroup>: (
|
---|
| 478 | symmetry = "c2v"
|
---|
| 479 | symmetry_frame = [
|
---|
| 480 | [ 0 0 1 ]
|
---|
| 481 | [ 0 1 0 ]
|
---|
| 482 | [ 1 0 0 ]
|
---|
| 483 | ]
|
---|
| 484 | )
|
---|
| 485 | </pre>
|
---|
| 486 | */
|
---|
| 487 | PointGroup(const Ref<KeyVal>&);
|
---|
| 488 |
|
---|
| 489 | PointGroup(StateIn&);
|
---|
| 490 | PointGroup(const PointGroup&);
|
---|
| 491 | PointGroup(const Ref<PointGroup>&);
|
---|
| 492 | ~PointGroup();
|
---|
| 493 |
|
---|
| 494 | PointGroup& operator=(const PointGroup&);
|
---|
| 495 |
|
---|
| 496 | /// Returns 1 if the point groups are equivalent, 0 otherwise.
|
---|
| 497 | int equiv(const Ref<PointGroup> &, double tol = 1.0e-6) const;
|
---|
| 498 |
|
---|
| 499 | /// Returns the CharacterTable for this point group.
|
---|
| 500 | CharacterTable char_table() const;
|
---|
| 501 | /// Returns the Schoenflies symbol for this point group.
|
---|
| 502 | const char * symbol() const { return symb; }
|
---|
| 503 | /// Returns the frame of reference for this point group.
|
---|
| 504 | SymmetryOperation& symm_frame() { return frame; }
|
---|
| 505 | /// A const version of the above
|
---|
| 506 | const SymmetryOperation& symm_frame() const { return frame; }
|
---|
| 507 | /// Returns the origin of the symmetry frame.
|
---|
| 508 | SCVector3& origin() { return origin_; }
|
---|
| 509 | const SCVector3& origin() const { return origin_; }
|
---|
| 510 |
|
---|
| 511 | /// Sets (or resets) the Schoenflies symbol.
|
---|
| 512 | void set_symbol(const char*);
|
---|
| 513 |
|
---|
| 514 | void save_data_state(StateOut& so);
|
---|
| 515 |
|
---|
| 516 | void print(std::ostream&o=ExEnv::out0()) const;
|
---|
| 517 | };
|
---|
| 518 |
|
---|
| 519 | }
|
---|
| 520 |
|
---|
| 521 | #endif
|
---|
| 522 |
|
---|
| 523 | // Local Variables:
|
---|
| 524 | // mode: c++
|
---|
| 525 | // c-file-style: "ETS"
|
---|
| 526 | // End:
|
---|