1 | //
|
---|
2 | // obwfn.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <util/state/stateio.h>
|
---|
33 | #include <util/misc/formio.h>
|
---|
34 |
|
---|
35 | #include <math/symmetry/corrtab.h>
|
---|
36 | #include <math/scmat/local.h>
|
---|
37 | #include <math/scmat/blocked.h>
|
---|
38 |
|
---|
39 | #include <chemistry/qc/basis/integral.h>
|
---|
40 | #include <chemistry/qc/basis/obint.h>
|
---|
41 | #include <chemistry/qc/basis/petite.h>
|
---|
42 | #include <chemistry/qc/wfn/obwfn.h>
|
---|
43 |
|
---|
44 | using namespace std;
|
---|
45 | using namespace sc;
|
---|
46 |
|
---|
47 | #define DEBUG 0
|
---|
48 |
|
---|
49 | #ifndef DBL_EPSILON
|
---|
50 | #define DBL_EPSILON 1.0e-15
|
---|
51 | #endif
|
---|
52 |
|
---|
53 | static ClassDesc OneBodyWavefunction_cd(
|
---|
54 | typeid(OneBodyWavefunction),"OneBodyWavefunction",1,"public Wavefunction",
|
---|
55 | 0, 0, 0);
|
---|
56 |
|
---|
57 | OneBodyWavefunction::OneBodyWavefunction(const Ref<KeyVal>&keyval):
|
---|
58 | Wavefunction(keyval),
|
---|
59 | density_(this),
|
---|
60 | oso_eigenvectors_(this),
|
---|
61 | eigenvalues_(this),
|
---|
62 | nirrep_(0),
|
---|
63 | nvecperirrep_(0),
|
---|
64 | occupations_(0),
|
---|
65 | alpha_occupations_(0),
|
---|
66 | beta_occupations_(0)
|
---|
67 | {
|
---|
68 | double acc = keyval->doublevalue("eigenvector_accuracy");
|
---|
69 | if (keyval->error() != KeyVal::OK)
|
---|
70 | acc = value_.desired_accuracy();
|
---|
71 |
|
---|
72 | oso_eigenvectors_.set_desired_accuracy(acc);
|
---|
73 | eigenvalues_.set_desired_accuracy(acc);
|
---|
74 |
|
---|
75 | if (oso_eigenvectors_.desired_accuracy() < DBL_EPSILON) {
|
---|
76 | oso_eigenvectors_.set_desired_accuracy(DBL_EPSILON);
|
---|
77 | eigenvalues_.set_desired_accuracy(DBL_EPSILON);
|
---|
78 | }
|
---|
79 | }
|
---|
80 |
|
---|
81 | OneBodyWavefunction::OneBodyWavefunction(StateIn&s):
|
---|
82 | SavableState(s),
|
---|
83 | Wavefunction(s),
|
---|
84 | density_(this),
|
---|
85 | oso_eigenvectors_(this),
|
---|
86 | eigenvalues_(this),
|
---|
87 | nirrep_(0),
|
---|
88 | nvecperirrep_(0),
|
---|
89 | occupations_(0),
|
---|
90 | alpha_occupations_(0),
|
---|
91 | beta_occupations_(0)
|
---|
92 | {
|
---|
93 | oso_eigenvectors_.result_noupdate() =
|
---|
94 | basis_matrixkit()->matrix(oso_dimension(), oso_dimension());
|
---|
95 | oso_eigenvectors_.restore_state(s);
|
---|
96 | oso_eigenvectors_.result_noupdate().restore(s);
|
---|
97 |
|
---|
98 | eigenvalues_.result_noupdate() =
|
---|
99 | basis_matrixkit()->diagmatrix(oso_dimension());
|
---|
100 | eigenvalues_.restore_state(s);
|
---|
101 | eigenvalues_.result_noupdate().restore(s);
|
---|
102 |
|
---|
103 | density_.result_noupdate() =
|
---|
104 | basis_matrixkit()->symmmatrix(so_dimension());
|
---|
105 | density_.restore_state(s);
|
---|
106 | density_.result_noupdate().restore(s);
|
---|
107 | }
|
---|
108 |
|
---|
109 | OneBodyWavefunction::~OneBodyWavefunction()
|
---|
110 | {
|
---|
111 | if (nvecperirrep_) {
|
---|
112 | delete[] nvecperirrep_;
|
---|
113 | delete[] occupations_;
|
---|
114 | delete[] alpha_occupations_;
|
---|
115 | delete[] beta_occupations_;
|
---|
116 | }
|
---|
117 | nirrep_=0;
|
---|
118 | nvecperirrep_=0;
|
---|
119 | occupations_=0;
|
---|
120 | alpha_occupations_=0;
|
---|
121 | beta_occupations_=0;
|
---|
122 | }
|
---|
123 |
|
---|
124 | void
|
---|
125 | OneBodyWavefunction::save_data_state(StateOut&s)
|
---|
126 | {
|
---|
127 | Wavefunction::save_data_state(s);
|
---|
128 |
|
---|
129 | oso_eigenvectors_.save_data_state(s);
|
---|
130 | oso_eigenvectors_.result_noupdate().save(s);
|
---|
131 |
|
---|
132 | eigenvalues_.save_data_state(s);
|
---|
133 | eigenvalues_.result_noupdate().save(s);
|
---|
134 |
|
---|
135 | density_.save_data_state(s);
|
---|
136 | density_.result_noupdate().save(s);
|
---|
137 | }
|
---|
138 |
|
---|
139 | RefSCMatrix
|
---|
140 | OneBodyWavefunction::projected_eigenvectors(const Ref<OneBodyWavefunction>& owfn,
|
---|
141 | int alp)
|
---|
142 | {
|
---|
143 | //............................................................
|
---|
144 | // first obtain the guess density matrix
|
---|
145 |
|
---|
146 | // The old density in the old SO basis
|
---|
147 | RefSymmSCMatrix oldP_so;
|
---|
148 | if (owfn->spin_unrestricted()) {
|
---|
149 | if (alp) oldP_so = owfn->alpha_density();
|
---|
150 | else oldP_so = owfn->beta_density();
|
---|
151 | }
|
---|
152 | else oldP_so = owfn->density();
|
---|
153 |
|
---|
154 | ExEnv::out0() << endl << indent
|
---|
155 | << "Projecting the guess density.\n"
|
---|
156 | << endl;
|
---|
157 | ExEnv::out0() << incindent;
|
---|
158 |
|
---|
159 | // The old overlap
|
---|
160 | RefSymmSCMatrix oldS = owfn->overlap();
|
---|
161 | ExEnv::out0() << indent
|
---|
162 | << "The number of electrons in the guess density = "
|
---|
163 | << (oldP_so*oldS).trace() << endl;
|
---|
164 |
|
---|
165 | // Transform the old SO overlap into the orthogonal SO basis, oSO
|
---|
166 | RefSCMatrix old_so_to_oso = owfn->so_to_orthog_so();
|
---|
167 | RefSymmSCMatrix oldP_oso(owfn->oso_dimension(), owfn->basis_matrixkit());
|
---|
168 | oldP_oso->assign(0.0);
|
---|
169 | oldP_oso->accumulate_transform(old_so_to_oso, oldP_so);
|
---|
170 |
|
---|
171 | //............................................................
|
---|
172 | // transform the guess density into the current basis
|
---|
173 |
|
---|
174 | // the transformation matrix is the new basis/old basis overlap
|
---|
175 | integral()->set_basis(owfn->basis(), basis());
|
---|
176 | RefSCMatrix old_to_new_ao(owfn->basis()->basisdim(), basis()->basisdim(),
|
---|
177 | basis()->matrixkit());
|
---|
178 | Ref<SCElementOp> op = new OneBodyIntOp(integral()->overlap());
|
---|
179 | old_to_new_ao.assign(0.0);
|
---|
180 | old_to_new_ao.element_op(op);
|
---|
181 | op = 0;
|
---|
182 | integral()->set_basis(basis());
|
---|
183 |
|
---|
184 | // now must transform the transform into the SO basis
|
---|
185 | Ref<PetiteList> pl = integral()->petite_list();
|
---|
186 | Ref<PetiteList> oldpl = owfn->integral()->petite_list();
|
---|
187 | RefSCMatrix blocked_old_to_new_ao(oldpl->AO_basisdim(), pl->AO_basisdim(),
|
---|
188 | basis()->so_matrixkit());
|
---|
189 | blocked_old_to_new_ao->convert(old_to_new_ao);
|
---|
190 | RefSCMatrix old_to_new_so
|
---|
191 | = oldpl->sotoao() * blocked_old_to_new_ao * pl->aotoso();
|
---|
192 |
|
---|
193 | // now must transform the transform into the orthogonal SO basis
|
---|
194 | RefSCMatrix so_to_oso = so_to_orthog_so();
|
---|
195 | RefSCMatrix old_to_new_oso = owfn->so_to_orthog_so_inverse().t()
|
---|
196 | * old_to_new_so
|
---|
197 | * so_to_oso.t();
|
---|
198 | old_so_to_oso = 0;
|
---|
199 | old_to_new_so = 0;
|
---|
200 |
|
---|
201 | // The old density transformed to the new orthogonal SO basis
|
---|
202 | RefSymmSCMatrix newP_oso(oso_dimension(), basis_matrixkit());
|
---|
203 | newP_oso->assign(0.0);
|
---|
204 | newP_oso->accumulate_transform(old_to_new_oso.t(), oldP_oso);
|
---|
205 | old_to_new_oso = 0;
|
---|
206 | oldP_oso = 0;
|
---|
207 | //newP_oso.print("projected orthoSO density");
|
---|
208 |
|
---|
209 | ExEnv::out0() << indent
|
---|
210 | << "The number of electrons in the projected density = "
|
---|
211 | << newP_oso.trace() << endl;
|
---|
212 |
|
---|
213 | //............................................................
|
---|
214 |
|
---|
215 | // reverse the sign of the density so the eigenvectors will
|
---|
216 | // be ordered in the right way
|
---|
217 | newP_oso.scale(-1.0);
|
---|
218 |
|
---|
219 | // use the guess density in the new basis to find the orbitals
|
---|
220 | // (the density should be diagonal in the MO basis--this proceedure
|
---|
221 | // will not give canonical orbitals, but they should at least give
|
---|
222 | // a decent density)
|
---|
223 | RefDiagSCMatrix newP_oso_vals(newP_oso.dim(), basis_matrixkit());
|
---|
224 | RefSCMatrix newP_oso_vecs(newP_oso.dim(), newP_oso.dim(), basis_matrixkit());
|
---|
225 | newP_oso.diagonalize(newP_oso_vals, newP_oso_vecs);
|
---|
226 | //newP_oso_vals.print("eigenvalues of projected density");
|
---|
227 |
|
---|
228 | // Reordering of the vectors isn't needed because of the way
|
---|
229 | // the density was scaled above.
|
---|
230 | RefSCMatrix newvec_oso = newP_oso_vecs;
|
---|
231 |
|
---|
232 | if (debug_ >= 2) {
|
---|
233 | newvec_oso.print("projected ortho SO vector");
|
---|
234 | so_to_oso.print("SO to ortho SO transformation");
|
---|
235 | }
|
---|
236 |
|
---|
237 | ExEnv::out0() << decindent;
|
---|
238 | return newvec_oso;
|
---|
239 | }
|
---|
240 |
|
---|
241 | // this is a hack for big basis sets where the core hamiltonian eigenvalues
|
---|
242 | // are total garbage. Use the old wavefunction's occupied eigenvalues, and
|
---|
243 | // set all others to 99.
|
---|
244 |
|
---|
245 | RefDiagSCMatrix
|
---|
246 | OneBodyWavefunction::projected_eigenvalues(const Ref<OneBodyWavefunction>& owfn,
|
---|
247 | int alp)
|
---|
248 | {
|
---|
249 | // get the old eigenvalues and the new core hamiltonian evals
|
---|
250 | RefDiagSCMatrix oval;
|
---|
251 | if (owfn->spin_unrestricted()) {
|
---|
252 | if (alp)
|
---|
253 | oval = owfn->alpha_eigenvalues();
|
---|
254 | else
|
---|
255 | oval = owfn->beta_eigenvalues();
|
---|
256 | } else
|
---|
257 | oval = owfn->eigenvalues();
|
---|
258 |
|
---|
259 | BlockedDiagSCMatrix *ovalp =
|
---|
260 | require_dynamic_cast<BlockedDiagSCMatrix*>(oval.pointer(),
|
---|
261 | "OneBodyWavefunction::projected_eigenvalues: oval"
|
---|
262 | );
|
---|
263 |
|
---|
264 | // get the core hamiltonian eigenvalues
|
---|
265 | RefDiagSCMatrix val;
|
---|
266 | hcore_guess(val);
|
---|
267 | BlockedDiagSCMatrix *valp =
|
---|
268 | require_dynamic_cast<BlockedDiagSCMatrix*>(val.pointer(),
|
---|
269 | "OneBodyWavefunction::projected_eigenvalues: val"
|
---|
270 | );
|
---|
271 |
|
---|
272 | RefSCDimension oso = oso_dimension();
|
---|
273 | RefSCDimension ooso = owfn->oso_dimension();
|
---|
274 |
|
---|
275 | for (int irrep=0; irrep < valp->nblocks(); irrep++) {
|
---|
276 | // find out how many occupied orbitals there should be
|
---|
277 |
|
---|
278 | int nf = oso->blocks()->size(irrep);
|
---|
279 | int nfo = ooso->blocks()->size(irrep);
|
---|
280 |
|
---|
281 | int nocc = 0;
|
---|
282 | if (owfn->spin_unrestricted()) {
|
---|
283 | if (alp)
|
---|
284 | while (owfn->alpha_occupation(irrep,nocc) &&
|
---|
285 | nocc < nfo) nocc++;
|
---|
286 | else
|
---|
287 | while (owfn->beta_occupation(irrep,nocc) &&
|
---|
288 | nocc < nfo) nocc++;
|
---|
289 | } else
|
---|
290 | while (owfn->occupation(irrep,nocc) &&
|
---|
291 | nocc < nfo) nocc++;
|
---|
292 |
|
---|
293 | if (!nf)
|
---|
294 | continue;
|
---|
295 |
|
---|
296 | double *vals = new double[nf];
|
---|
297 | valp->block(irrep)->convert(vals);
|
---|
298 |
|
---|
299 | int i;
|
---|
300 | if (nfo) {
|
---|
301 | double *ovals = new double[nfo];
|
---|
302 | ovalp->block(irrep)->convert(ovals);
|
---|
303 | for (i=0; i < nocc; i++) vals[i] = ovals[i];
|
---|
304 | delete[] ovals;
|
---|
305 | }
|
---|
306 |
|
---|
307 | for (i=nocc; i < nf; i++)
|
---|
308 | vals[i] = 99.0;
|
---|
309 |
|
---|
310 | valp->block(irrep)->assign(vals);
|
---|
311 |
|
---|
312 | delete[] vals;
|
---|
313 | }
|
---|
314 |
|
---|
315 | #if DEBUG
|
---|
316 | val.print("projected values");
|
---|
317 | #endif
|
---|
318 |
|
---|
319 | return val;
|
---|
320 | }
|
---|
321 |
|
---|
322 | RefSCMatrix
|
---|
323 | OneBodyWavefunction::so_to_mo()
|
---|
324 | {
|
---|
325 | // works for transforming H, S, etc (covariant)
|
---|
326 | return orthog_so_to_mo() * so_to_orthog_so();
|
---|
327 | // works for transforming the Density (contravariant)
|
---|
328 | //return orthog_so_to_mo() * so_to_orthog_so_inverse().t();
|
---|
329 | }
|
---|
330 |
|
---|
331 | RefSCMatrix
|
---|
332 | OneBodyWavefunction::orthog_so_to_mo()
|
---|
333 | {
|
---|
334 | return oso_eigenvectors().t();
|
---|
335 | }
|
---|
336 |
|
---|
337 | RefSCMatrix
|
---|
338 | OneBodyWavefunction::mo_to_so()
|
---|
339 | {
|
---|
340 | // works for transforming H, S, etc (covariant)
|
---|
341 | return so_to_orthog_so_inverse() * mo_to_orthog_so();
|
---|
342 | // works for transforming the Density (contravariant)
|
---|
343 | //return so_to_orthog_so().t() * mo_to_orthog_so();
|
---|
344 | }
|
---|
345 |
|
---|
346 | RefSCMatrix
|
---|
347 | OneBodyWavefunction::mo_to_orthog_so()
|
---|
348 | {
|
---|
349 | return oso_eigenvectors();
|
---|
350 | }
|
---|
351 |
|
---|
352 | RefSCMatrix
|
---|
353 | OneBodyWavefunction::eigenvectors()
|
---|
354 | {
|
---|
355 | return so_to_orthog_so().t() * oso_eigenvectors();
|
---|
356 | }
|
---|
357 |
|
---|
358 | RefSCMatrix
|
---|
359 | OneBodyWavefunction::hcore_guess()
|
---|
360 | {
|
---|
361 | RefDiagSCMatrix val;
|
---|
362 | return hcore_guess(val);
|
---|
363 | }
|
---|
364 |
|
---|
365 | RefSCMatrix
|
---|
366 | OneBodyWavefunction::hcore_guess(RefDiagSCMatrix &val)
|
---|
367 | {
|
---|
368 | RefSCMatrix vec(oso_dimension(), oso_dimension(), basis_matrixkit());
|
---|
369 | val = basis_matrixkit()->diagmatrix(oso_dimension());
|
---|
370 |
|
---|
371 | // I'm about to do something strange, but it will only work
|
---|
372 | // if the SO and orthogonal SO dimensions are equivalent. This
|
---|
373 | // is not the case for canonical orthogonalization when there
|
---|
374 | // are linear dependencies.
|
---|
375 | if (so_dimension()->equiv(oso_dimension())) {
|
---|
376 | // Yes, this is diagonalizing Hcore in a nonorthogonal basis
|
---|
377 | // and does not really make any sense--except it seems to
|
---|
378 | // always give a better initial guess. I don't understand
|
---|
379 | // why it works better.
|
---|
380 | core_hamiltonian().diagonalize(val,vec);
|
---|
381 | }
|
---|
382 | else {
|
---|
383 | RefSymmSCMatrix hcore_oso(oso_dimension(), basis_matrixkit());
|
---|
384 | hcore_oso->assign(0.0);
|
---|
385 | hcore_oso->accumulate_transform(so_to_orthog_so(), core_hamiltonian());
|
---|
386 |
|
---|
387 | if (debug_ > 1) {
|
---|
388 | hcore_oso.print("hcore in ortho SO basis");
|
---|
389 | }
|
---|
390 |
|
---|
391 | hcore_oso.diagonalize(val,vec);
|
---|
392 |
|
---|
393 | if (debug_ > 1) {
|
---|
394 | val.print("hcore eigenvalues in ortho SO basis");
|
---|
395 | vec.print("hcore eigenvectors in ortho SO basis");
|
---|
396 | }
|
---|
397 | }
|
---|
398 |
|
---|
399 | return vec;
|
---|
400 | }
|
---|
401 |
|
---|
402 | // Function for returning an orbital value at a point
|
---|
403 | double
|
---|
404 | OneBodyWavefunction::orbital(const SCVector3& r, int iorb)
|
---|
405 | {
|
---|
406 | return Wavefunction::orbital(r,iorb,eigenvectors());
|
---|
407 | }
|
---|
408 |
|
---|
409 | // Function for returning an orbital value at a point
|
---|
410 | double
|
---|
411 | OneBodyWavefunction::orbital_density(const SCVector3& r,
|
---|
412 | int iorb,
|
---|
413 | double* orbval)
|
---|
414 | {
|
---|
415 | return Wavefunction::orbital_density(r,iorb,eigenvectors(),orbval);
|
---|
416 | }
|
---|
417 |
|
---|
418 | void
|
---|
419 | OneBodyWavefunction::print(ostream&o) const
|
---|
420 | {
|
---|
421 | Wavefunction::print(o);
|
---|
422 | }
|
---|
423 |
|
---|
424 | void
|
---|
425 | OneBodyWavefunction::init_sym_info()
|
---|
426 | {
|
---|
427 | RefSCDimension d = oso_dimension();
|
---|
428 | nirrep_ = d->blocks()->nblock();
|
---|
429 | nvecperirrep_ = new int[nirrep_];
|
---|
430 | occupations_ = new double[d->n()];
|
---|
431 | alpha_occupations_ = new double[d->n()];
|
---|
432 | beta_occupations_ = new double[d->n()];
|
---|
433 |
|
---|
434 | int ij=0;
|
---|
435 | for (int i=0; i < nirrep_; i++) {
|
---|
436 | nvecperirrep_[i] = d->blocks()->size(i);
|
---|
437 |
|
---|
438 | for (int j=0; j < nvecperirrep_[i]; j++, ij++) {
|
---|
439 | if (!spin_unrestricted()) occupations_[ij] = occupation(i,j);
|
---|
440 | else occupations_[ij] = 0.0;
|
---|
441 | alpha_occupations_[ij] = alpha_occupation(i,j);
|
---|
442 | beta_occupations_[ij] = beta_occupation(i,j);
|
---|
443 | }
|
---|
444 | }
|
---|
445 | }
|
---|
446 |
|
---|
447 | double
|
---|
448 | OneBodyWavefunction::occupation(int vectornum)
|
---|
449 | {
|
---|
450 | if (spin_unrestricted()) {
|
---|
451 | ExEnv::errn() << "OneBodyWavefunction::occupation: called for USCF case"
|
---|
452 | << endl;
|
---|
453 | abort();
|
---|
454 | }
|
---|
455 | if (!nirrep_) init_sym_info();
|
---|
456 | return occupations_[vectornum];
|
---|
457 | }
|
---|
458 |
|
---|
459 | double
|
---|
460 | OneBodyWavefunction::alpha_occupation(int vectornum)
|
---|
461 | {
|
---|
462 | if (!nirrep_) init_sym_info();
|
---|
463 | return alpha_occupations_[vectornum];
|
---|
464 | }
|
---|
465 |
|
---|
466 | double
|
---|
467 | OneBodyWavefunction::beta_occupation(int vectornum)
|
---|
468 | {
|
---|
469 | if (!nirrep_) init_sym_info();
|
---|
470 | return beta_occupations_[vectornum];
|
---|
471 | }
|
---|
472 |
|
---|
473 | double
|
---|
474 | OneBodyWavefunction::alpha_occupation(int irrep, int vectornum)
|
---|
475 | {
|
---|
476 | if (!spin_polarized())
|
---|
477 | return 0.5*occupation(irrep, vectornum);
|
---|
478 |
|
---|
479 | ExEnv::errn() << class_name() << "::alpha_occupation not implemented" << endl;
|
---|
480 | abort();
|
---|
481 | return 0;
|
---|
482 | }
|
---|
483 |
|
---|
484 | double
|
---|
485 | OneBodyWavefunction::beta_occupation(int irrep, int vectornum)
|
---|
486 | {
|
---|
487 | if (!spin_polarized())
|
---|
488 | return 0.5*occupation(irrep, vectornum);
|
---|
489 |
|
---|
490 | ExEnv::errn() << class_name() << "::beta_occupation not implemented" << endl;
|
---|
491 | abort();
|
---|
492 | return 0;
|
---|
493 | }
|
---|
494 |
|
---|
495 | RefSCMatrix
|
---|
496 | OneBodyWavefunction::oso_alpha_eigenvectors()
|
---|
497 | {
|
---|
498 | if (!spin_unrestricted())
|
---|
499 | return oso_eigenvectors().copy();
|
---|
500 |
|
---|
501 | ExEnv::errn() << class_name() << "::oso_alpha_eigenvectors not implemented" << endl;
|
---|
502 | abort();
|
---|
503 | return 0;
|
---|
504 | }
|
---|
505 |
|
---|
506 | RefSCMatrix
|
---|
507 | OneBodyWavefunction::oso_beta_eigenvectors()
|
---|
508 | {
|
---|
509 | if (!spin_unrestricted())
|
---|
510 | return oso_eigenvectors().copy();
|
---|
511 |
|
---|
512 | ExEnv::errn() << class_name() << "::oso_beta_eigenvectors not implemented" << endl;
|
---|
513 | abort();
|
---|
514 | return 0;
|
---|
515 | }
|
---|
516 |
|
---|
517 | RefSCMatrix
|
---|
518 | OneBodyWavefunction::alpha_eigenvectors()
|
---|
519 | {
|
---|
520 | if (!spin_unrestricted())
|
---|
521 | return eigenvectors().copy();
|
---|
522 |
|
---|
523 | ExEnv::errn() << class_name() << "::alpha_eigenvectors not implemented" << endl;
|
---|
524 | abort();
|
---|
525 | return 0;
|
---|
526 | }
|
---|
527 |
|
---|
528 | RefSCMatrix
|
---|
529 | OneBodyWavefunction::beta_eigenvectors()
|
---|
530 | {
|
---|
531 | if (!spin_unrestricted())
|
---|
532 | return eigenvectors().copy();
|
---|
533 |
|
---|
534 | ExEnv::errn() << class_name() << "::beta_eigenvectors not implemented" << endl;
|
---|
535 | abort();
|
---|
536 | return 0;
|
---|
537 | }
|
---|
538 |
|
---|
539 | RefDiagSCMatrix
|
---|
540 | OneBodyWavefunction::alpha_eigenvalues()
|
---|
541 | {
|
---|
542 | if (!spin_unrestricted())
|
---|
543 | return eigenvalues().copy();
|
---|
544 |
|
---|
545 | ExEnv::errn() << class_name() << "::alpha_eigenvalues not implemented" << endl;
|
---|
546 | abort();
|
---|
547 | return 0;
|
---|
548 | }
|
---|
549 |
|
---|
550 | RefDiagSCMatrix
|
---|
551 | OneBodyWavefunction::beta_eigenvalues()
|
---|
552 | {
|
---|
553 | if (!spin_unrestricted())
|
---|
554 | return eigenvalues().copy();
|
---|
555 |
|
---|
556 | ExEnv::errn() << class_name() << "::beta_eigenvalues not implemented" << endl;
|
---|
557 | abort();
|
---|
558 | return 0;
|
---|
559 | }
|
---|
560 |
|
---|
561 | int
|
---|
562 | OneBodyWavefunction::nelectron()
|
---|
563 | {
|
---|
564 | int noso = oso_dimension()->n();
|
---|
565 | double tocc = 0.0;
|
---|
566 | if (!spin_polarized()) {
|
---|
567 | for (int i=0; i<noso; i++) {
|
---|
568 | tocc += occupation(i);
|
---|
569 | }
|
---|
570 | }
|
---|
571 | else {
|
---|
572 | for (int i=0; i<noso; i++) {
|
---|
573 | tocc += alpha_occupation(i) + beta_occupation(i);
|
---|
574 | }
|
---|
575 | }
|
---|
576 | return int(tocc+0.5);
|
---|
577 | }
|
---|
578 |
|
---|
579 | void
|
---|
580 | OneBodyWavefunction::symmetry_changed()
|
---|
581 | {
|
---|
582 | Wavefunction::symmetry_changed();
|
---|
583 |
|
---|
584 | // junk the old occupation information
|
---|
585 | delete[] nvecperirrep_;
|
---|
586 | delete[] occupations_;
|
---|
587 | delete[] alpha_occupations_;
|
---|
588 | delete[] beta_occupations_;
|
---|
589 | nirrep_ = 0;
|
---|
590 | nvecperirrep_=0;
|
---|
591 | occupations_=0;
|
---|
592 | alpha_occupations_=0;
|
---|
593 | beta_occupations_=0;
|
---|
594 |
|
---|
595 | // for now, delete old eigenvectors...later we'll transform to new
|
---|
596 | // pointgroup
|
---|
597 | oso_eigenvectors_.result_noupdate() = 0;
|
---|
598 | }
|
---|
599 |
|
---|
600 | int
|
---|
601 | OneBodyWavefunction::form_occupations(int *&newocc, const int *oldocc)
|
---|
602 | {
|
---|
603 | delete[] newocc;
|
---|
604 | newocc = 0;
|
---|
605 |
|
---|
606 | CorrelationTable corrtab;
|
---|
607 | if (corrtab.initialize_table(initial_pg_, molecule()->point_group()))
|
---|
608 | return 0;
|
---|
609 |
|
---|
610 | newocc = new int[corrtab.subn()];
|
---|
611 | memset(newocc,0,sizeof(int)*corrtab.subn());
|
---|
612 |
|
---|
613 | for (int i=0; i<corrtab.n(); i++) {
|
---|
614 | for (int j=0; j<corrtab.ngamma(i); j++) {
|
---|
615 | int gam = corrtab.gamma(i,j);
|
---|
616 | newocc[gam] += (corrtab.subdegen(gam)*oldocc[i])/corrtab.degen(i);
|
---|
617 | }
|
---|
618 | }
|
---|
619 |
|
---|
620 | return 1;
|
---|
621 | }
|
---|
622 |
|
---|
623 | void
|
---|
624 | OneBodyWavefunction::set_desired_value_accuracy(double eps)
|
---|
625 | {
|
---|
626 | Function::set_desired_value_accuracy(eps);
|
---|
627 | oso_eigenvectors_.set_desired_accuracy(eps);
|
---|
628 | eigenvalues_.set_desired_accuracy(eps);
|
---|
629 | }
|
---|
630 |
|
---|
631 | /////////////////////////////////////////////////////////////////////////////
|
---|
632 |
|
---|
633 | // Local Variables:
|
---|
634 | // mode: c++
|
---|
635 | // c-file-style: "ETS"
|
---|
636 | // End:
|
---|