| 1 | //
 | 
|---|
| 2 | // comp1e.cc
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
| 5 | //
 | 
|---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
 | 
|---|
| 7 | // Maintainer: LPS
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // This file is part of the SC Toolkit.
 | 
|---|
| 10 | //
 | 
|---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
| 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
| 14 | // any later version.
 | 
|---|
| 15 | //
 | 
|---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 19 | // GNU Library General Public License for more details.
 | 
|---|
| 20 | //
 | 
|---|
| 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
| 24 | //
 | 
|---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
| 26 | //
 | 
|---|
| 27 | 
 | 
|---|
| 28 | #include <stdlib.h>
 | 
|---|
| 29 | #include <math.h>
 | 
|---|
| 30 | 
 | 
|---|
| 31 | #include <util/misc/formio.h>
 | 
|---|
| 32 | #include <util/misc/math.h>
 | 
|---|
| 33 | #include <chemistry/qc/intv3/macros.h>
 | 
|---|
| 34 | #include <chemistry/qc/intv3/fjt.h>
 | 
|---|
| 35 | #include <chemistry/qc/intv3/utils.h>
 | 
|---|
| 36 | #include <chemistry/qc/intv3/int1e.h>
 | 
|---|
| 37 | #include <chemistry/qc/intv3/tformv3.h>
 | 
|---|
| 38 | 
 | 
|---|
| 39 | using namespace std;
 | 
|---|
| 40 | using namespace sc;
 | 
|---|
| 41 | 
 | 
|---|
| 42 | #define IN(i,j) ((i)==(j)?1:0)
 | 
|---|
| 43 | #define SELECT(x1,x2,x3,s) (((s)==0)?x1:(((s)==1)?(x2):(x3)))
 | 
|---|
| 44 | 
 | 
|---|
| 45 | #define DEBUG_NUC_SHELL_DER 0
 | 
|---|
| 46 | #define DEBUG_NUC_PRIM 0
 | 
|---|
| 47 | #define DEBUG_NUC_SHELL 0
 | 
|---|
| 48 | 
 | 
|---|
| 49 | #define DEBUG_EFIELD_PRIM 0
 | 
|---|
| 50 | 
 | 
|---|
| 51 | /* ------------ Initialization of 1e routines. ------------------- */
 | 
|---|
| 52 | /* This routine returns a buffer large enough to hold a shell doublet
 | 
|---|
| 53 |  * of integrals (if order == 0) or derivative integrals (if order == 1).
 | 
|---|
| 54 |  */
 | 
|---|
| 55 | void
 | 
|---|
| 56 | Int1eV3::int_initialize_1e(int flags, int order)
 | 
|---|
| 57 | {
 | 
|---|
| 58 |   int jmax1,jmax2,jmax;
 | 
|---|
| 59 |   int scratchsize=0,nshell2;
 | 
|---|
| 60 | 
 | 
|---|
| 61 |   /* The efield routines look like derivatives so bump up order if
 | 
|---|
| 62 |    * it is zero to allow efield integrals to be computed.
 | 
|---|
| 63 |    */
 | 
|---|
| 64 |   if (order == 0) order = 1;
 | 
|---|
| 65 | 
 | 
|---|
| 66 |   jmax1 = bs1_->max_angular_momentum();
 | 
|---|
| 67 |   jmax2 = bs2_->max_angular_momentum();
 | 
|---|
| 68 |   jmax = jmax1 + jmax2;
 | 
|---|
| 69 | 
 | 
|---|
| 70 |   fjt_ = new FJT(jmax + 2*order);
 | 
|---|
| 71 | 
 | 
|---|
| 72 |   nshell2 = bs1_->max_ncartesian_in_shell()*bs2_->max_ncartesian_in_shell();
 | 
|---|
| 73 | 
 | 
|---|
| 74 |   if (order == 0) {
 | 
|---|
| 75 |     init_order = 0;
 | 
|---|
| 76 |     scratchsize = nshell2;
 | 
|---|
| 77 |     }
 | 
|---|
| 78 |   else if (order == 1) {
 | 
|---|
| 79 |     init_order = 1;
 | 
|---|
| 80 |     scratchsize = nshell2*3;
 | 
|---|
| 81 |     }
 | 
|---|
| 82 |   else {
 | 
|---|
| 83 |     ExEnv::errn() << scprintf("int_initialize_1e: invalid order: %d\n",order);
 | 
|---|
| 84 |     exit(1);
 | 
|---|
| 85 |     }
 | 
|---|
| 86 | 
 | 
|---|
| 87 |   buff = new double[scratchsize];
 | 
|---|
| 88 |   cartesianbuffer = new double[scratchsize];
 | 
|---|
| 89 |   cartesianbuffer_scratch = new double[scratchsize];
 | 
|---|
| 90 | 
 | 
|---|
| 91 |   inter.set_dim(jmax1+order+1,jmax2+order+1,jmax+2*order+1);
 | 
|---|
| 92 |   efield_inter.set_dim(jmax1+order+1,jmax2+order+1,jmax+2*order+1);
 | 
|---|
| 93 |   int i,j,m;
 | 
|---|
| 94 |   for (i=0; i<=jmax1+order; i++) {
 | 
|---|
| 95 |     int sizei = INT_NCART_NN(i);
 | 
|---|
| 96 |     for (j=0; j<=jmax2+order; j++) {
 | 
|---|
| 97 |       int sizej = INT_NCART_NN(j);
 | 
|---|
| 98 |       for (m=0; m<=jmax+2*order-i-j; m++) {
 | 
|---|
| 99 |         inter(i,j,m) = new double[sizei*sizej];
 | 
|---|
| 100 |         efield_inter(i,j,m) = new double[sizei*sizej*3];
 | 
|---|
| 101 |         }
 | 
|---|
| 102 |       for (; m<=jmax+2*order; m++) {
 | 
|---|
| 103 |         inter(i,j,m) = 0;
 | 
|---|
| 104 |         efield_inter(i,j,m) = 0;
 | 
|---|
| 105 |         }
 | 
|---|
| 106 |       }
 | 
|---|
| 107 |     }
 | 
|---|
| 108 | 
 | 
|---|
| 109 |   }
 | 
|---|
| 110 | 
 | 
|---|
| 111 | void
 | 
|---|
| 112 | Int1eV3::int_done_1e()
 | 
|---|
| 113 | {
 | 
|---|
| 114 |   init_order = -1;
 | 
|---|
| 115 |   delete[] buff;
 | 
|---|
| 116 |   delete[] cartesianbuffer;
 | 
|---|
| 117 |   delete[] cartesianbuffer_scratch;
 | 
|---|
| 118 |   buff = 0;
 | 
|---|
| 119 |   cartesianbuffer = 0;
 | 
|---|
| 120 |   inter.delete_data();
 | 
|---|
| 121 |   efield_inter.delete_data();
 | 
|---|
| 122 | }
 | 
|---|
| 123 | 
 | 
|---|
| 124 | 
 | 
|---|
| 125 | /* --------------------------------------------------------------- */
 | 
|---|
| 126 | /* ------------- Routines for the overlap matrix ----------------- */
 | 
|---|
| 127 | /* --------------------------------------------------------------- */
 | 
|---|
| 128 | 
 | 
|---|
| 129 | /* This computes the overlap integrals between functions in two shells.
 | 
|---|
| 130 |  * The result is placed in the buffer.
 | 
|---|
| 131 |  */
 | 
|---|
| 132 | void
 | 
|---|
| 133 | Int1eV3::overlap(int ish, int jsh)
 | 
|---|
| 134 | {
 | 
|---|
| 135 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 136 |   int gc1,gc2;
 | 
|---|
| 137 |   int index,index1,index2;
 | 
|---|
| 138 | 
 | 
|---|
| 139 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 140 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 141 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 142 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 143 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 144 |     }
 | 
|---|
| 145 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 146 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 147 |   index = 0;
 | 
|---|
| 148 |   FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
 | 
|---|
| 149 |     FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
 | 
|---|
| 150 |       cartesianbuffer[index] = comp_shell_overlap(gc1,i1,j1,k1,gc2,i2,j2,k2);
 | 
|---|
| 151 |       index++;
 | 
|---|
| 152 |       END_FOR_GCCART_GS(index2)
 | 
|---|
| 153 |     END_FOR_GCCART_GS(index1)
 | 
|---|
| 154 | 
 | 
|---|
| 155 |   transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 156 |   }
 | 
|---|
| 157 | 
 | 
|---|
| 158 | /* This computes the overlap ints between functions in two shells.
 | 
|---|
| 159 |  * The result is placed in the buffer.
 | 
|---|
| 160 |  */
 | 
|---|
| 161 | void
 | 
|---|
| 162 | Int1eV3::overlap_1der(int ish, int jsh,
 | 
|---|
| 163 |                       int idercs, int centernum)
 | 
|---|
| 164 | {
 | 
|---|
| 165 |   int i;
 | 
|---|
| 166 |   int c1,c2;
 | 
|---|
| 167 |   int ni,nj;
 | 
|---|
| 168 | 
 | 
|---|
| 169 |   if (!(init_order >= 0)) {
 | 
|---|
| 170 |     ExEnv::errn() << scprintf("int_shell_overlap: one electron routines are not init'ed\n");
 | 
|---|
| 171 |     exit(1);
 | 
|---|
| 172 |     }
 | 
|---|
| 173 | 
 | 
|---|
| 174 |   Ref<GaussianBasisSet> dercs;
 | 
|---|
| 175 |   if (idercs == 0) dercs = bs1_;
 | 
|---|
| 176 |   else dercs = bs2_;
 | 
|---|
| 177 | 
 | 
|---|
| 178 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 179 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 180 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 181 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 182 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 183 |     }
 | 
|---|
| 184 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 185 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 186 | 
 | 
|---|
| 187 |   ni = gshell1->nfunction();
 | 
|---|
| 188 |   nj = gshell2->nfunction();
 | 
|---|
| 189 | 
 | 
|---|
| 190 | #if 0
 | 
|---|
| 191 |   ExEnv::outn() << scprintf("zeroing %d*%d*3 elements of buff\n",ni,nj);
 | 
|---|
| 192 | #endif
 | 
|---|
| 193 |   for (i=0; i<ni*nj*3; i++) {
 | 
|---|
| 194 |     buff[i] = 0.0;
 | 
|---|
| 195 |     }
 | 
|---|
| 196 | 
 | 
|---|
| 197 |   int_accum_shell_overlap_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 198 |   }
 | 
|---|
| 199 | 
 | 
|---|
| 200 | /* This computes the overlap derivative integrals between functions
 | 
|---|
| 201 |  * in two shells.  The result is accumulated in the buffer which is ordered
 | 
|---|
| 202 |  * atom 0 x, y, z, atom 1, ... .
 | 
|---|
| 203 |  */
 | 
|---|
| 204 | void
 | 
|---|
| 205 | Int1eV3::int_accum_shell_overlap_1der(int ish, int jsh,
 | 
|---|
| 206 |                                       Ref<GaussianBasisSet> dercs, int centernum)
 | 
|---|
| 207 | {
 | 
|---|
| 208 |   accum_shell_1der(buff,ish,jsh,dercs,centernum,&Int1eV3::comp_shell_overlap);
 | 
|---|
| 209 |   }
 | 
|---|
| 210 | 
 | 
|---|
| 211 | /* Compute the overlap for the shell.  The arguments are the
 | 
|---|
| 212 |  * cartesian exponents for centers 1 and 2.  The shell1 and shell2
 | 
|---|
| 213 |  * globals are used. */
 | 
|---|
| 214 | double
 | 
|---|
| 215 | Int1eV3::comp_shell_overlap(int gc1, int i1, int j1, int k1,
 | 
|---|
| 216 |                             int gc2, int i2, int j2, int k2)
 | 
|---|
| 217 | {
 | 
|---|
| 218 |   double exp1,exp2;
 | 
|---|
| 219 |   int i,j,xyz;
 | 
|---|
| 220 |   double result;
 | 
|---|
| 221 |   double Pi;
 | 
|---|
| 222 |   double oozeta;
 | 
|---|
| 223 |   double AmB,AmB2;
 | 
|---|
| 224 |   double tmp;
 | 
|---|
| 225 | 
 | 
|---|
| 226 |   if ((i1<0)||(j1<0)||(k1<0)||(i2<0)||(j2<0)||(k2<0)) return 0.0;
 | 
|---|
| 227 | 
 | 
|---|
| 228 |   /* Loop over the primitives in the shells. */
 | 
|---|
| 229 |   result = 0.0;
 | 
|---|
| 230 |   for (i=0; i<gshell1->nprimitive(); i++) {
 | 
|---|
| 231 |     for (j=0; j<gshell2->nprimitive(); j++) {
 | 
|---|
| 232 | 
 | 
|---|
| 233 |       /* Compute the intermediates. */
 | 
|---|
| 234 |       exp1 = gshell1->exponent(i);
 | 
|---|
| 235 |       exp2 = gshell2->exponent(j);
 | 
|---|
| 236 |       oozeta = 1.0/(exp1 + exp2);
 | 
|---|
| 237 |       oo2zeta = 0.5*oozeta;
 | 
|---|
| 238 |       AmB2 = 0.0;
 | 
|---|
| 239 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 240 |         Pi = oozeta*(exp1 * A[xyz] + exp2 * B[xyz]);
 | 
|---|
| 241 |         PmA[xyz] = Pi - A[xyz];
 | 
|---|
| 242 |         PmB[xyz] = Pi - B[xyz];
 | 
|---|
| 243 |         AmB = A[xyz] - B[xyz];
 | 
|---|
| 244 |         AmB2 += AmB*AmB;
 | 
|---|
| 245 |         }
 | 
|---|
| 246 |       ss =   pow(M_PI/(exp1+exp2),1.5)
 | 
|---|
| 247 |            * exp(- oozeta * exp1 * exp2 * AmB2);
 | 
|---|
| 248 |       tmp     =  gshell1->coefficient_unnorm(gc1,i)
 | 
|---|
| 249 |                * gshell2->coefficient_unnorm(gc2,j)
 | 
|---|
| 250 |                * comp_prim_overlap(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 251 |       if (exponent_weighted == 0) tmp *= exp1;
 | 
|---|
| 252 |       else if (exponent_weighted == 1) tmp *= exp2;
 | 
|---|
| 253 |       result += tmp;
 | 
|---|
| 254 |       }
 | 
|---|
| 255 |     }
 | 
|---|
| 256 | 
 | 
|---|
| 257 |   return result;
 | 
|---|
| 258 |   }
 | 
|---|
| 259 | 
 | 
|---|
| 260 | /* Compute the overlap between two primitive functions. */
 | 
|---|
| 261 | #if 0
 | 
|---|
| 262 | double
 | 
|---|
| 263 | Int1eV3::int_prim_overlap(shell_t *pshell1, shell_t *pshell2,
 | 
|---|
| 264 |                           double *pA, double *pB,
 | 
|---|
| 265 |                           int prim1, int prim2,
 | 
|---|
| 266 |                           int i1, int j1, int k1,
 | 
|---|
| 267 |                           int i2, int j2, int k2)
 | 
|---|
| 268 | {
 | 
|---|
| 269 |   int xyz;
 | 
|---|
| 270 |   double Pi;
 | 
|---|
| 271 |   double oozeta;
 | 
|---|
| 272 |   double AmB,AmB2;
 | 
|---|
| 273 | 
 | 
|---|
| 274 |   /* Compute the intermediates. */
 | 
|---|
| 275 |   oozeta = 1.0/(gshell1->exponent(prim1) + gshell2->exponent(prim2));
 | 
|---|
| 276 |   oo2zeta = 0.5*oozeta;
 | 
|---|
| 277 |   AmB2 = 0.0;
 | 
|---|
| 278 |   for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 279 |     Pi = oozeta*(gshell1->exponent(prim1) * A[xyz]
 | 
|---|
| 280 |                  + gshell2->exponent(prim2) * B[xyz]);
 | 
|---|
| 281 |     PmA[xyz] = Pi - A[xyz];
 | 
|---|
| 282 |     PmB[xyz] = Pi - B[xyz];
 | 
|---|
| 283 |     AmB = A[xyz] - B[xyz];
 | 
|---|
| 284 |     AmB2 += AmB*AmB;
 | 
|---|
| 285 |     }
 | 
|---|
| 286 |   ss =   pow(M_PI/(gshell1->exponent(prim1)
 | 
|---|
| 287 |                                 +gshell2->exponent(prim2)),1.5)
 | 
|---|
| 288 |        * exp(- oozeta * gshell1->exponent(prim1)
 | 
|---|
| 289 |              * gshell2->exponent(prim2) * AmB2);
 | 
|---|
| 290 |   return comp_prim_overlap(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 291 |   }
 | 
|---|
| 292 | #endif
 | 
|---|
| 293 | 
 | 
|---|
| 294 | double
 | 
|---|
| 295 | Int1eV3::comp_prim_overlap(int i1, int j1, int k1,
 | 
|---|
| 296 |                          int i2, int j2, int k2)
 | 
|---|
| 297 | {
 | 
|---|
| 298 |   double result;
 | 
|---|
| 299 | 
 | 
|---|
| 300 |   if (i1) {
 | 
|---|
| 301 |     result = PmA[0] * comp_prim_overlap(i1-1,j1,k1,i2,j2,k2);
 | 
|---|
| 302 |     if (i1>1) result += oo2zeta*(i1-1) * comp_prim_overlap(i1-2,j1,k1,i2,j2,k2);
 | 
|---|
| 303 |     if (i2>0) result += oo2zeta*i2 * comp_prim_overlap(i1-1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 304 |     return result;
 | 
|---|
| 305 |     }
 | 
|---|
| 306 |   if (j1) {
 | 
|---|
| 307 |     result = PmA[1] * comp_prim_overlap(i1,j1-1,k1,i2,j2,k2);
 | 
|---|
| 308 |     if (j1>1) result += oo2zeta*(j1-1) * comp_prim_overlap(i1,j1-2,k1,i2,j2,k2);
 | 
|---|
| 309 |     if (j2>0) result += oo2zeta*j2 * comp_prim_overlap(i1,j1-1,k1,i2,j2-1,k2);
 | 
|---|
| 310 |     return result;
 | 
|---|
| 311 |     }
 | 
|---|
| 312 |   if (k1) {
 | 
|---|
| 313 |     result = PmA[2] * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2);
 | 
|---|
| 314 |     if (k1>1) result += oo2zeta*(k1-1) * comp_prim_overlap(i1,j1,k1-2,i2,j2,k2);
 | 
|---|
| 315 |     if (k2>0) result += oo2zeta*k2 * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2-1);
 | 
|---|
| 316 |     return result;
 | 
|---|
| 317 |     }
 | 
|---|
| 318 | 
 | 
|---|
| 319 |   if (i2) {
 | 
|---|
| 320 |     result = PmB[0] * comp_prim_overlap(i1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 321 |     if (i2>1) result += oo2zeta*(i2-1) * comp_prim_overlap(i1,j1,k1,i2-2,j2,k2);
 | 
|---|
| 322 |     if (i1>0) result += oo2zeta*i1 * comp_prim_overlap(i1-1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 323 |     return result;
 | 
|---|
| 324 |     }
 | 
|---|
| 325 |   if (j2) {
 | 
|---|
| 326 |     result = PmB[1] * comp_prim_overlap(i1,j1,k1,i2,j2-1,k2);
 | 
|---|
| 327 |     if (j2>1) result += oo2zeta*(j2-1) * comp_prim_overlap(i1,j1,k1,i2,j2-2,k2);
 | 
|---|
| 328 |     if (j1>0) result += oo2zeta*j1 * comp_prim_overlap(i1,j1-1,k1,i2,j2-1,k2);
 | 
|---|
| 329 |     return result;
 | 
|---|
| 330 |     }
 | 
|---|
| 331 |   if (k2) {
 | 
|---|
| 332 |     result = PmB[2] * comp_prim_overlap(i1,j1,k1,i2,j2,k2-1);
 | 
|---|
| 333 |     if (k2>1) result += oo2zeta*(k2-1) * comp_prim_overlap(i1,j1,k1,i2,j2,k2-2);
 | 
|---|
| 334 |     if (k1>0) result += oo2zeta*k1 * comp_prim_overlap(i1,j1,k1-1,i2,j2,k2-1);
 | 
|---|
| 335 |     return result;
 | 
|---|
| 336 |     }
 | 
|---|
| 337 | 
 | 
|---|
| 338 |   return ss;
 | 
|---|
| 339 |   }
 | 
|---|
| 340 | 
 | 
|---|
| 341 | /* --------------------------------------------------------------- */
 | 
|---|
| 342 | /* ------------- Routines for the kinetic energy ----------------- */
 | 
|---|
| 343 | /* --------------------------------------------------------------- */
 | 
|---|
| 344 | 
 | 
|---|
| 345 | /* This computes the kinetic energy integrals between functions in two shells.
 | 
|---|
| 346 |  * The result is placed in the buffer.
 | 
|---|
| 347 |  */
 | 
|---|
| 348 | void
 | 
|---|
| 349 | Int1eV3::kinetic(int ish, int jsh)
 | 
|---|
| 350 | {
 | 
|---|
| 351 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 352 |   int cart1,cart2;
 | 
|---|
| 353 |   int index;
 | 
|---|
| 354 |   int gc1,gc2;
 | 
|---|
| 355 | 
 | 
|---|
| 356 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 357 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 358 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 359 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 360 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 361 |     }
 | 
|---|
| 362 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 363 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 364 |   index = 0;
 | 
|---|
| 365 |   FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
 | 
|---|
| 366 |     FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
 | 
|---|
| 367 |       cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
 | 
|---|
| 368 |       index++;
 | 
|---|
| 369 |       END_FOR_GCCART_GS(cart2)
 | 
|---|
| 370 |     END_FOR_GCCART_GS(cart1)
 | 
|---|
| 371 | 
 | 
|---|
| 372 |   transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 373 |   }
 | 
|---|
| 374 | 
 | 
|---|
| 375 | void
 | 
|---|
| 376 | Int1eV3::int_accum_shell_kinetic(int ish, int jsh)
 | 
|---|
| 377 | {
 | 
|---|
| 378 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 379 |   int cart1,cart2;
 | 
|---|
| 380 |   int index;
 | 
|---|
| 381 |   int gc1,gc2;
 | 
|---|
| 382 | 
 | 
|---|
| 383 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 384 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 385 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 386 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 387 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 388 |     }
 | 
|---|
| 389 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 390 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 391 |   index = 0;
 | 
|---|
| 392 | 
 | 
|---|
| 393 |   FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
 | 
|---|
| 394 |     FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
 | 
|---|
| 395 |       cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
 | 
|---|
| 396 |       index++;
 | 
|---|
| 397 |       END_FOR_GCCART_GS(cart2)
 | 
|---|
| 398 |     END_FOR_GCCART_GS(cart1)
 | 
|---|
| 399 |   accum_transform_1e(integral_, cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 400 |   }
 | 
|---|
| 401 | 
 | 
|---|
| 402 | /* This computes the kinetic energy derivative integrals between functions
 | 
|---|
| 403 |  * in two shells.  The result is accumulated in the buffer which is ordered
 | 
|---|
| 404 |  * atom 0 x, y, z, atom 1, ... .
 | 
|---|
| 405 |  */
 | 
|---|
| 406 | void
 | 
|---|
| 407 | Int1eV3::int_accum_shell_kinetic_1der(int ish, int jsh,
 | 
|---|
| 408 |                                       Ref<GaussianBasisSet> dercs, int centernum)
 | 
|---|
| 409 | {
 | 
|---|
| 410 |   accum_shell_1der(buff,ish,jsh,dercs,centernum,&Int1eV3::comp_shell_kinetic);
 | 
|---|
| 411 |   }
 | 
|---|
| 412 | 
 | 
|---|
| 413 | /* This computes the basis function part of 
 | 
|---|
| 414 |  * generic derivative integrals between functions
 | 
|---|
| 415 |  * in two shells.  The result is accumulated in the buffer which is ordered
 | 
|---|
| 416 |  * atom 0 x, y, z, atom 1, ... .
 | 
|---|
| 417 |  * The function used to compute the nonderivative integrals is shell_function.
 | 
|---|
| 418 |  */
 | 
|---|
| 419 | void
 | 
|---|
| 420 | Int1eV3::accum_shell_1der(double *buff, int ish, int jsh,
 | 
|---|
| 421 |                           Ref<GaussianBasisSet> dercs, int centernum,
 | 
|---|
| 422 |                           double (Int1eV3::*shell_function)
 | 
|---|
| 423 |                           (int,int,int,int,int,int,int,int))
 | 
|---|
| 424 | {
 | 
|---|
| 425 |   int i;
 | 
|---|
| 426 |   int gc1,gc2;
 | 
|---|
| 427 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 428 |   int index1,index2;
 | 
|---|
| 429 |   double tmp[3];
 | 
|---|
| 430 |   double *ctmp = cartesianbuffer;
 | 
|---|
| 431 | 
 | 
|---|
| 432 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 433 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 434 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 435 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 436 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 437 |     }
 | 
|---|
| 438 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 439 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 440 |   FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
 | 
|---|
| 441 |     FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
 | 
|---|
| 442 |       if ((bs1_==bs2_)&&(c1==c2)) {
 | 
|---|
| 443 |         if (    three_center
 | 
|---|
| 444 |              && !((bs1_==third_centers)&&(c1==third_centernum))
 | 
|---|
| 445 |              && ((bs1_==dercs)&&(c1==centernum))) {
 | 
|---|
| 446 |           for (i=0; i<3; i++) {
 | 
|---|
| 447 |             /* Derivative wrt first shell. */
 | 
|---|
| 448 |             exponent_weighted = 0;
 | 
|---|
| 449 |             tmp[i] = 2.0 *
 | 
|---|
| 450 |                (this->*shell_function)(gc1,i1+IN(i,0),j1+IN(i,1),k1+IN(i,2),gc2,i2,j2,k2);
 | 
|---|
| 451 |             exponent_weighted = -1;
 | 
|---|
| 452 |             if (SELECT(i1,j1,k1,i)) {
 | 
|---|
| 453 |               tmp[i] -= SELECT(i1,j1,k1,i) *
 | 
|---|
| 454 |                 (this->*shell_function)(gc1,i1-IN(i,0),j1-IN(i,1),k1-IN(i,2),gc2,i2,j2,k2);
 | 
|---|
| 455 |               }
 | 
|---|
| 456 |             /* Derviative wrt second shell. */
 | 
|---|
| 457 |             exponent_weighted = 1;
 | 
|---|
| 458 |             tmp[i] += 2.0 *
 | 
|---|
| 459 |                (this->*shell_function)(gc1,i1,j1,k1,gc2,i2+IN(i,0),j2+IN(i,1),k2+IN(i,2));
 | 
|---|
| 460 |             exponent_weighted = -1;
 | 
|---|
| 461 |             if (SELECT(i2,j2,k2,i)) {
 | 
|---|
| 462 |               tmp[i] -= SELECT(i2,j2,k2,i) *
 | 
|---|
| 463 |                 (this->*shell_function)(gc1,i1,j1,k1,gc2,i2-IN(i,0),j2-IN(i,1),k2-IN(i,2));
 | 
|---|
| 464 |               }
 | 
|---|
| 465 |             }
 | 
|---|
| 466 |           }
 | 
|---|
| 467 |         else {
 | 
|---|
| 468 |           /* If there are two centers and they are the same, then we
 | 
|---|
| 469 |            * use translational invariance to get a net contrib of 0.0 */
 | 
|---|
| 470 |           for (i=0; i<3; i++) tmp[i] = 0.0;
 | 
|---|
| 471 |           }
 | 
|---|
| 472 |         }
 | 
|---|
| 473 |       else if ((bs1_==dercs)&&(c1==centernum)) {
 | 
|---|
| 474 |         for (i=0; i<3; i++) {
 | 
|---|
| 475 |           exponent_weighted = 0;
 | 
|---|
| 476 |           tmp[i] = 2.0 *
 | 
|---|
| 477 |              (this->*shell_function)(gc1,i1+IN(i,0),j1+IN(i,1),k1+IN(i,2),gc2,i2,j2,k2);
 | 
|---|
| 478 |           exponent_weighted = -1;
 | 
|---|
| 479 |           if (SELECT(i1,j1,k1,i)) {
 | 
|---|
| 480 |             tmp[i] -= SELECT(i1,j1,k1,i) *
 | 
|---|
| 481 |               (this->*shell_function)(gc1,i1-IN(i,0),j1-IN(i,1),k1-IN(i,2),gc2,i2,j2,k2);
 | 
|---|
| 482 |             }
 | 
|---|
| 483 |           }
 | 
|---|
| 484 |         }
 | 
|---|
| 485 |       else if ((bs2_==dercs)&&(c2==centernum)) {
 | 
|---|
| 486 |         for (i=0; i<3; i++) {
 | 
|---|
| 487 |           exponent_weighted = 1;
 | 
|---|
| 488 |           tmp[i] = 2.0 *
 | 
|---|
| 489 |              (this->*shell_function)(gc1,i1,j1,k1,gc2,i2+IN(i,0),j2+IN(i,1),k2+IN(i,2));
 | 
|---|
| 490 |           exponent_weighted = -1;
 | 
|---|
| 491 |           if (SELECT(i2,j2,k2,i)) {
 | 
|---|
| 492 |             tmp[i] -= SELECT(i2,j2,k2,i) *
 | 
|---|
| 493 |               (this->*shell_function)(gc1,i1,j1,k1,gc2,i2-IN(i,0),j2-IN(i,1),k2-IN(i,2));
 | 
|---|
| 494 |             }
 | 
|---|
| 495 |           }
 | 
|---|
| 496 |         }
 | 
|---|
| 497 |       else {
 | 
|---|
| 498 |         for (i=0; i<3; i++) tmp[i] = 0.0;
 | 
|---|
| 499 |         }
 | 
|---|
| 500 | 
 | 
|---|
| 501 |       if (scale_shell_result) {
 | 
|---|
| 502 |         for (i=0; i<3; i++) tmp[i] *= result_scale_factor;
 | 
|---|
| 503 |         }
 | 
|---|
| 504 | 
 | 
|---|
| 505 |       for (i=0; i<3; i++) ctmp[i] = tmp[i];
 | 
|---|
| 506 | 
 | 
|---|
| 507 |       /* Increment the pointer to the xyz for the next atom. */
 | 
|---|
| 508 |       ctmp += 3;
 | 
|---|
| 509 |       END_FOR_GCCART_GS(index2)
 | 
|---|
| 510 |     END_FOR_GCCART_GS(index1)
 | 
|---|
| 511 | 
 | 
|---|
| 512 |   accum_transform_1e_xyz(integral_,
 | 
|---|
| 513 |                          cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 514 |   }
 | 
|---|
| 515 | 
 | 
|---|
| 516 | /* This computes the basis function part of 
 | 
|---|
| 517 |  * generic derivative integrals between functions
 | 
|---|
| 518 |  * in two shells.  The result is accumulated in the buffer which is ordered
 | 
|---|
| 519 |  * atom 0 x, y, z, atom 1, ... .
 | 
|---|
| 520 |  * The function used to compute the nonderivative integrals is shell_function.
 | 
|---|
| 521 |  */
 | 
|---|
| 522 | void
 | 
|---|
| 523 | Int1eV3::accum_shell_block_1der(double *buff, int ish, int jsh,
 | 
|---|
| 524 |                                 Ref<GaussianBasisSet> dercs, int centernum,
 | 
|---|
| 525 |                                 void (Int1eV3::*shell_block_function)
 | 
|---|
| 526 |                                   (int gc1, int a, int gc2, int b,
 | 
|---|
| 527 |                                    int gcsize2, int gcoff1, int gcoff2,
 | 
|---|
| 528 |                                    double coef, double *buffer))
 | 
|---|
| 529 | {
 | 
|---|
| 530 |   int i;
 | 
|---|
| 531 |   int gc1,gc2;
 | 
|---|
| 532 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 533 |   int index1,index2;
 | 
|---|
| 534 | 
 | 
|---|
| 535 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 536 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 537 | 
 | 
|---|
| 538 |   int docenter1=0, docenter2=0;
 | 
|---|
| 539 |   int equiv12 = (bs1_==bs2_)&&(c1==c2);
 | 
|---|
| 540 |   int der1 = (bs1_==dercs)&&(c1==centernum);
 | 
|---|
| 541 |   int der2 = (bs2_==dercs)&&(c2==centernum);
 | 
|---|
| 542 |   if (!equiv12) {
 | 
|---|
| 543 |     docenter1 = der1;
 | 
|---|
| 544 |     docenter2 = der2;
 | 
|---|
| 545 |     }
 | 
|---|
| 546 |   else if (three_center) {
 | 
|---|
| 547 |     int equiv123 = (bs1_==third_centers)&&(c1==third_centernum);
 | 
|---|
| 548 |     if (!equiv123) {
 | 
|---|
| 549 |       docenter1 = der1;
 | 
|---|
| 550 |       docenter2 = der2;
 | 
|---|
| 551 |       }
 | 
|---|
| 552 |     }
 | 
|---|
| 553 | 
 | 
|---|
| 554 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 555 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 556 |   int gcsize1 = gshell1->ncartesian();
 | 
|---|
| 557 |   int gcsize2 = gshell2->ncartesian();
 | 
|---|
| 558 |   memset(cartesianbuffer,0,sizeof(double)*gcsize1*gcsize2*3);
 | 
|---|
| 559 | 
 | 
|---|
| 560 |   if (!docenter1 && !docenter2) return;
 | 
|---|
| 561 | 
 | 
|---|
| 562 |   double coef;
 | 
|---|
| 563 |   if (scale_shell_result) {
 | 
|---|
| 564 |     coef = result_scale_factor;
 | 
|---|
| 565 |     }
 | 
|---|
| 566 |   else coef = 1.0;
 | 
|---|
| 567 | 
 | 
|---|
| 568 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 569 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 570 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 571 |     }
 | 
|---|
| 572 |   int gcoff1 = 0;
 | 
|---|
| 573 |   for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
 | 
|---|
| 574 |     int a = gshell1->am(gc1);
 | 
|---|
| 575 |     int sizea = INT_NCART_NN(a);
 | 
|---|
| 576 |     int sizeap1 = INT_NCART_NN(a+1);
 | 
|---|
| 577 |     int sizeam1 = INT_NCART(a-1);
 | 
|---|
| 578 |     int gcoff2 = 0;
 | 
|---|
| 579 |     for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
 | 
|---|
| 580 |       int b = gshell2->am(gc2);
 | 
|---|
| 581 |       int sizeb = INT_NCART_NN(b);
 | 
|---|
| 582 |       int sizebp1 = INT_NCART_NN(b+1);
 | 
|---|
| 583 |       int sizebm1 = INT_NCART(b-1);
 | 
|---|
| 584 |       /* Derivative wrt first shell. */
 | 
|---|
| 585 |       if (docenter1) {
 | 
|---|
| 586 |         exponent_weighted = 0;
 | 
|---|
| 587 |         memset(cartesianbuffer_scratch,0,sizeof(double)*sizeap1*sizeb);
 | 
|---|
| 588 |         (this->*shell_block_function)(gc1, a+1, gc2, b,
 | 
|---|
| 589 |                                       sizeb, 0, 0,
 | 
|---|
| 590 |                                       coef, cartesianbuffer_scratch);
 | 
|---|
| 591 |         index1=0;
 | 
|---|
| 592 |         FOR_CART(i1,j1,k1,a) {
 | 
|---|
| 593 |           index2=0;
 | 
|---|
| 594 |           FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 595 |             double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
 | 
|---|
| 596 |                                              +index2+gcoff2)*3];
 | 
|---|
| 597 |             for (i=0; i<3; i++) {
 | 
|---|
| 598 |               int ind = INT_CARTINDEX(a+1,i1+IN(i,0),j1+IN(i,1));
 | 
|---|
| 599 |               *ctmp++ += 2.0*cartesianbuffer_scratch[ind*sizeb+index2];
 | 
|---|
| 600 |               }
 | 
|---|
| 601 |             index2++;
 | 
|---|
| 602 |             } END_FOR_CART;
 | 
|---|
| 603 |           index1++;
 | 
|---|
| 604 |           } END_FOR_CART;
 | 
|---|
| 605 | 
 | 
|---|
| 606 |         if (a) {
 | 
|---|
| 607 |           exponent_weighted = -1;
 | 
|---|
| 608 |           memset(cartesianbuffer_scratch,0,sizeof(double)*sizeam1*sizeb);
 | 
|---|
| 609 |           (this->*shell_block_function)(gc1, a-1, gc2, b,
 | 
|---|
| 610 |                                         sizeb, 0, 0,
 | 
|---|
| 611 |                                         coef, cartesianbuffer_scratch);
 | 
|---|
| 612 |           index1=0;
 | 
|---|
| 613 |           FOR_CART(i1,j1,k1,a) {
 | 
|---|
| 614 |             index2=0;
 | 
|---|
| 615 |             FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 616 |               double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
 | 
|---|
| 617 |                                                +index2+gcoff2)*3];
 | 
|---|
| 618 |               for (i=0; i<3; i++) {
 | 
|---|
| 619 |                 int sel = SELECT(i1,j1,k1,i);
 | 
|---|
| 620 |                 if (sel) {
 | 
|---|
| 621 |                   int ind = INT_CARTINDEX(a-1,i1-IN(i,0),j1-IN(i,1));
 | 
|---|
| 622 |                   ctmp[i] -= sel * cartesianbuffer_scratch[ind*sizeb+index2];
 | 
|---|
| 623 |                   }
 | 
|---|
| 624 |                 }
 | 
|---|
| 625 |               index2++;
 | 
|---|
| 626 |               } END_FOR_CART;
 | 
|---|
| 627 |             index1++;
 | 
|---|
| 628 |             } END_FOR_CART;
 | 
|---|
| 629 |           }
 | 
|---|
| 630 |         }
 | 
|---|
| 631 |       if (docenter2) {
 | 
|---|
| 632 |         /* Derviative wrt second shell. */
 | 
|---|
| 633 |         exponent_weighted = 1;
 | 
|---|
| 634 |         memset(cartesianbuffer_scratch,0,sizeof(double)*sizea*sizebp1);
 | 
|---|
| 635 |         (this->*shell_block_function)(gc1, a, gc2, b+1,
 | 
|---|
| 636 |                                       sizebp1, 0, 0,
 | 
|---|
| 637 |                                       coef, cartesianbuffer_scratch);
 | 
|---|
| 638 |         index1=0;
 | 
|---|
| 639 |         FOR_CART(i1,j1,k1,a) {
 | 
|---|
| 640 |           index2=0;
 | 
|---|
| 641 |           FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 642 |             double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
 | 
|---|
| 643 |                                              +index2+gcoff2)*3];
 | 
|---|
| 644 |             for (i=0; i<3; i++) {
 | 
|---|
| 645 |               int ind = INT_CARTINDEX(b+1,i2+IN(i,0),j2+IN(i,1));
 | 
|---|
| 646 |               *ctmp++ += 2.0*cartesianbuffer_scratch[index1*sizebp1+ind];
 | 
|---|
| 647 |               }
 | 
|---|
| 648 |             index2++;
 | 
|---|
| 649 |             } END_FOR_CART;
 | 
|---|
| 650 |           index1++;
 | 
|---|
| 651 |           } END_FOR_CART;
 | 
|---|
| 652 | 
 | 
|---|
| 653 |         if (b) {
 | 
|---|
| 654 |           exponent_weighted = -1;
 | 
|---|
| 655 |           memset(cartesianbuffer_scratch,0,sizeof(double)*sizea*sizebm1);
 | 
|---|
| 656 |           (this->*shell_block_function)(gc1, a, gc2, b-1,
 | 
|---|
| 657 |                                         sizebm1, 0, 0,
 | 
|---|
| 658 |                                         coef, cartesianbuffer_scratch);
 | 
|---|
| 659 |           index1=0;
 | 
|---|
| 660 |           FOR_CART(i1,j1,k1,a) {
 | 
|---|
| 661 |             index2=0;
 | 
|---|
| 662 |             FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 663 |               double *ctmp = &cartesianbuffer[((index1+gcoff1)*gcsize2
 | 
|---|
| 664 |                                                +index2+gcoff2)*3];
 | 
|---|
| 665 |               for (i=0; i<3; i++) {
 | 
|---|
| 666 |                 int sel = SELECT(i2,j2,k2,i);
 | 
|---|
| 667 |                 if (sel) {
 | 
|---|
| 668 |                   int ind = INT_CARTINDEX(b-1,i2-IN(i,0),j2-IN(i,1));
 | 
|---|
| 669 |                   ctmp[i] -= sel * cartesianbuffer_scratch[index1*sizebm1+ind];
 | 
|---|
| 670 |                   }
 | 
|---|
| 671 |                 }
 | 
|---|
| 672 |               index2++;
 | 
|---|
| 673 |               } END_FOR_CART;
 | 
|---|
| 674 |             index1++;
 | 
|---|
| 675 |             } END_FOR_CART;
 | 
|---|
| 676 |           }
 | 
|---|
| 677 |         }
 | 
|---|
| 678 |       gcoff2 += INT_NCART_NN(b);
 | 
|---|
| 679 |       }
 | 
|---|
| 680 |     gcoff1 += INT_NCART_NN(a);
 | 
|---|
| 681 |     }
 | 
|---|
| 682 | 
 | 
|---|
| 683 |   accum_transform_1e_xyz(integral_,
 | 
|---|
| 684 |                          cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 685 | 
 | 
|---|
| 686 | #if DEBUG_NUC_SHELL_DER
 | 
|---|
| 687 |   double *fastbuff = cartesianbuffer;
 | 
|---|
| 688 |   cartesianbuffer = new double[gcsize1*gcsize2*3];
 | 
|---|
| 689 |   double *junkbuff = new double[gcsize1*gcsize2*3];
 | 
|---|
| 690 |   memset(junkbuff,0,sizeof(double)*gcsize1*gcsize2*3);
 | 
|---|
| 691 |   accum_shell_1der(junkbuff,ish,jsh,dercs,centernum,
 | 
|---|
| 692 |                    &Int1eV3::comp_shell_nuclear);
 | 
|---|
| 693 |   delete[] junkbuff;
 | 
|---|
| 694 |   int index = 0;
 | 
|---|
| 695 |   for (i=0; i<gcsize1; i++) {
 | 
|---|
| 696 |       for (int j=0; j<gcsize2; j++, index++) {
 | 
|---|
| 697 |           ExEnv::outn() << scprintf(" (%d %d): % 18.15f % 18.15f",
 | 
|---|
| 698 |                            i,j,cartesianbuffer[index],fastbuff[index]);
 | 
|---|
| 699 |           if (fabs(cartesianbuffer[index]-fastbuff[index])>1.0e-12) {
 | 
|---|
| 700 |               ExEnv::outn() << " **";
 | 
|---|
| 701 |             }
 | 
|---|
| 702 |           ExEnv::outn() << endl;
 | 
|---|
| 703 |         }
 | 
|---|
| 704 |     }
 | 
|---|
| 705 |   delete[] cartesianbuffer;
 | 
|---|
| 706 |   cartesianbuffer = fastbuff;
 | 
|---|
| 707 | #endif
 | 
|---|
| 708 |   }
 | 
|---|
| 709 | 
 | 
|---|
| 710 | /* Compute the kinetic energy for the shell.  The arguments are the
 | 
|---|
| 711 |  * cartesian exponents for centers 1 and 2.  The shell1 and shell2
 | 
|---|
| 712 |  * globals are used. */
 | 
|---|
| 713 | double
 | 
|---|
| 714 | Int1eV3::comp_shell_kinetic(int gc1, int i1, int j1, int k1,
 | 
|---|
| 715 |                           int gc2, int i2, int j2, int k2)
 | 
|---|
| 716 | {
 | 
|---|
| 717 |   int i,j,xyz;
 | 
|---|
| 718 |   double result;
 | 
|---|
| 719 |   double Pi;
 | 
|---|
| 720 |   double oozeta;
 | 
|---|
| 721 |   double AmB,AmB2;
 | 
|---|
| 722 |   double tmp;
 | 
|---|
| 723 | 
 | 
|---|
| 724 |   /* Loop over the primitives in the shells. */
 | 
|---|
| 725 |   result = 0.0;
 | 
|---|
| 726 |   for (i=0; i<gshell1->nprimitive(); i++) {
 | 
|---|
| 727 |     for (j=0; j<gshell2->nprimitive(); j++) {
 | 
|---|
| 728 | 
 | 
|---|
| 729 |       /* Compute the intermediates. */
 | 
|---|
| 730 |       oo2zeta_a = 0.5/gshell1->exponent(i);
 | 
|---|
| 731 |       oo2zeta_b = 0.5/gshell2->exponent(j);
 | 
|---|
| 732 |       oozeta = 1.0/(gshell1->exponent(i) + gshell2->exponent(j));
 | 
|---|
| 733 |       oo2zeta = 0.5*oozeta;
 | 
|---|
| 734 |       xi = oozeta * gshell1->exponent(i) * gshell2->exponent(j);
 | 
|---|
| 735 |       AmB2 = 0.0;
 | 
|---|
| 736 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 737 |         Pi = oozeta*(gshell1->exponent(i) * A[xyz]
 | 
|---|
| 738 |                      + gshell2->exponent(j) * B[xyz]);
 | 
|---|
| 739 |         PmA[xyz] = Pi - A[xyz];
 | 
|---|
| 740 |         PmB[xyz] = Pi - B[xyz];
 | 
|---|
| 741 |         AmB = A[xyz] - B[xyz];
 | 
|---|
| 742 |         AmB2 += AmB*AmB;
 | 
|---|
| 743 |         }
 | 
|---|
| 744 |       /* The s integral kinetic energy. */
 | 
|---|
| 745 |       ss =   pow(M_PI/(gshell1->exponent(i)
 | 
|---|
| 746 |                                     +gshell2->exponent(j)),1.5)
 | 
|---|
| 747 |            * exp(- xi * AmB2);
 | 
|---|
| 748 |       sTs =  ss
 | 
|---|
| 749 |            * xi
 | 
|---|
| 750 |            * (3.0 - 2.0 * xi * AmB2);
 | 
|---|
| 751 |       tmp     =  gshell1->coefficient_unnorm(gc1,i)
 | 
|---|
| 752 |                * gshell2->coefficient_unnorm(gc2,j)
 | 
|---|
| 753 |                * comp_prim_kinetic(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 754 |       if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
 | 
|---|
| 755 |       else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
 | 
|---|
| 756 |       result += tmp;
 | 
|---|
| 757 |       }
 | 
|---|
| 758 |     }
 | 
|---|
| 759 | 
 | 
|---|
| 760 |   return result;
 | 
|---|
| 761 |   }
 | 
|---|
| 762 | 
 | 
|---|
| 763 | double
 | 
|---|
| 764 | Int1eV3::comp_prim_kinetic(int i1, int j1, int k1,
 | 
|---|
| 765 |                          int i2, int j2, int k2)
 | 
|---|
| 766 | {
 | 
|---|
| 767 |   double tmp;
 | 
|---|
| 768 |   double result;
 | 
|---|
| 769 | 
 | 
|---|
| 770 |   if (i1) {
 | 
|---|
| 771 |     result = PmA[0] * comp_prim_kinetic(i1-1,j1,k1,i2,j2,k2);
 | 
|---|
| 772 |     if (i1>1) result += oo2zeta*(i1-1)*comp_prim_kinetic(i1-2,j1,k1,i2,j2,k2);
 | 
|---|
| 773 |     if (i2) result += oo2zeta*i2*comp_prim_kinetic(i1-1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 774 |     tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 775 |     if (i1>1) tmp -= oo2zeta_a*(i1-1)*comp_prim_overlap(i1-2,j1,k1,i2,j2,k2);
 | 
|---|
| 776 |     result += 2.0 * xi * tmp;
 | 
|---|
| 777 |     return result;
 | 
|---|
| 778 |     }
 | 
|---|
| 779 |   if (j1) {
 | 
|---|
| 780 |     result = PmA[1] * comp_prim_kinetic(i1,j1-1,k1,i2,j2,k2);
 | 
|---|
| 781 |     if (j1>1) result += oo2zeta*(j1-1)*comp_prim_kinetic(i1,j1-2,k1,i2,j2,k2);
 | 
|---|
| 782 |     if (j2) result += oo2zeta*j2*comp_prim_kinetic(i1,j1-1,k1,i2,j2-1,k2);
 | 
|---|
| 783 |     tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 784 |     if (j1>1) tmp -= oo2zeta_a*(j1-1)*comp_prim_overlap(i1,j1-2,k1,i2,j2,k2);
 | 
|---|
| 785 |     result += 2.0 * xi * tmp;
 | 
|---|
| 786 |     return result;
 | 
|---|
| 787 |     }
 | 
|---|
| 788 |   if (k1) {
 | 
|---|
| 789 |     result = PmA[2] * comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2);
 | 
|---|
| 790 |     if (k1>1) result += oo2zeta*(k1-1)*comp_prim_kinetic(i1,j1,k1-2,i2,j2,k2);
 | 
|---|
| 791 |     if (k2) result += oo2zeta*k2*comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2-1);
 | 
|---|
| 792 |     tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 793 |     if (k1>1) tmp -= oo2zeta_a*(k1-1)*comp_prim_overlap(i1,j1,k1-2,i2,j2,k2);
 | 
|---|
| 794 |     result += 2.0 * xi * tmp;
 | 
|---|
| 795 |     return result;
 | 
|---|
| 796 |     }
 | 
|---|
| 797 |   if (i2) {
 | 
|---|
| 798 |     result = PmB[0] * comp_prim_kinetic(i1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 799 |     if (i2>1) result += oo2zeta*(i2-1)*comp_prim_kinetic(i1,j1,k1,i2-2,j2,k2);
 | 
|---|
| 800 |     if (i1) result += oo2zeta*i1*comp_prim_kinetic(i1-1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 801 |     tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 802 |     if (i2>1) tmp -= oo2zeta_b*(i2-1)*comp_prim_overlap(i1,j1,k1,i2-2,j2,k2);
 | 
|---|
| 803 |     result += 2.0 * xi * tmp;
 | 
|---|
| 804 |     return result;
 | 
|---|
| 805 |     }
 | 
|---|
| 806 |   if (j2) {
 | 
|---|
| 807 |     result = PmB[1] * comp_prim_kinetic(i1,j1,k1,i2,j2-1,k2);
 | 
|---|
| 808 |     if (j2>1) result += oo2zeta*(j2-1)*comp_prim_kinetic(i1,j1,k1,i2,j2-2,k2);
 | 
|---|
| 809 |     if (j1) result += oo2zeta*i1*comp_prim_kinetic(i1,j1-1,k1,i2,j2-1,k2);
 | 
|---|
| 810 |     tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 811 |     if (j2>1) tmp -= oo2zeta_b*(j2-1)*comp_prim_overlap(i1,j1,k1,i2,j2-2,k2);
 | 
|---|
| 812 |     result += 2.0 * xi * tmp;
 | 
|---|
| 813 |     return result;
 | 
|---|
| 814 |     }
 | 
|---|
| 815 |   if (k2) {
 | 
|---|
| 816 |     result = PmB[2] * comp_prim_kinetic(i1,j1,k1,i2,j2,k2-1);
 | 
|---|
| 817 |     if (k2>1) result += oo2zeta*(k2-1)*comp_prim_kinetic(i1,j1,k1,i2,j2,k2-2);
 | 
|---|
| 818 |     if (k1) result += oo2zeta*i1*comp_prim_kinetic(i1,j1,k1-1,i2,j2,k2-1);
 | 
|---|
| 819 |     tmp = comp_prim_overlap(i1,j1,k1,i2,j2,k2);
 | 
|---|
| 820 |     if (k2>1) tmp -= oo2zeta_b*(k2-1)*comp_prim_overlap(i1,j1,k1,i2,j2,k2-2);
 | 
|---|
| 821 |     result += 2.0 * xi * tmp;
 | 
|---|
| 822 |     return result;
 | 
|---|
| 823 |     }
 | 
|---|
| 824 | 
 | 
|---|
| 825 |   return sTs;
 | 
|---|
| 826 |   }
 | 
|---|
| 827 | 
 | 
|---|
| 828 | /* --------------------------------------------------------------- */
 | 
|---|
| 829 | /* ------------- Routines for the nuclear attraction ------------- */
 | 
|---|
| 830 | /* --------------------------------------------------------------- */
 | 
|---|
| 831 | 
 | 
|---|
| 832 | /* This computes the nuclear attraction derivative integrals between functions
 | 
|---|
| 833 |  * in two shells.  The result is accumulated in the buffer which is ordered
 | 
|---|
| 834 |  * atom 0 x, y, z, atom 1, ... .
 | 
|---|
| 835 |  */
 | 
|---|
| 836 | void
 | 
|---|
| 837 | Int1eV3::int_accum_shell_nuclear_1der(int ish, int jsh,
 | 
|---|
| 838 |                                       Ref<GaussianBasisSet> dercs, int centernum)
 | 
|---|
| 839 | {
 | 
|---|
| 840 |   int_accum_shell_nuclear_hf_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 841 |   int_accum_shell_nuclear_nonhf_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 842 |   }
 | 
|---|
| 843 | 
 | 
|---|
| 844 | /* A correction to the Hellman-Feynman part is computed which
 | 
|---|
| 845 |  * is not included in the original HF routine.  This is only needed
 | 
|---|
| 846 |  * if the real Hellman-Feynman forces are desired, because the sum
 | 
|---|
| 847 |  * of the hf_1der and nonhf_1der forces are still correct.
 | 
|---|
| 848 |  */
 | 
|---|
| 849 | void
 | 
|---|
| 850 | Int1eV3::int_accum_shell_nuclear_hfc_1der(int ish, int jsh,
 | 
|---|
| 851 |                                           Ref<GaussianBasisSet> dercs,
 | 
|---|
| 852 |                                           int centernum)
 | 
|---|
| 853 | {
 | 
|---|
| 854 |   /* If both ish and jsh are not on the der center,
 | 
|---|
| 855 |    * then there's no correction. */
 | 
|---|
| 856 |   if (!(  (bs1_==dercs)
 | 
|---|
| 857 |         &&(bs2_==dercs)
 | 
|---|
| 858 |         &&(bs1_->shell_to_center(ish)==centernum)
 | 
|---|
| 859 |         &&(bs2_->shell_to_center(jsh)==centernum))) {
 | 
|---|
| 860 |     return;
 | 
|---|
| 861 |     }
 | 
|---|
| 862 | 
 | 
|---|
| 863 |   /* Compute the nuc attr part of the nuclear derivative for three equal
 | 
|---|
| 864 |    * centers. */
 | 
|---|
| 865 |   scale_shell_result = 1;
 | 
|---|
| 866 |   result_scale_factor = -bs1_->molecule()->charge(centernum);
 | 
|---|
| 867 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 868 |       C[xyz] = bs1_->r(centernum,xyz);
 | 
|---|
| 869 |     }
 | 
|---|
| 870 |   accum_shell_efield(buff,ish,jsh);
 | 
|---|
| 871 |   scale_shell_result = 0;
 | 
|---|
| 872 | 
 | 
|---|
| 873 |   }
 | 
|---|
| 874 | 
 | 
|---|
| 875 | /* This computes the nuclear attraction derivative integrals between functions
 | 
|---|
| 876 |  * in two shells.  The result is accumulated in the buffer which is ordered
 | 
|---|
| 877 |  * atom 0 x, y, z, atom 1, ... .  Only the Hellman-Feynman part is computed.
 | 
|---|
| 878 |  */
 | 
|---|
| 879 | void
 | 
|---|
| 880 | Int1eV3::int_accum_shell_nuclear_hf_1der(int ish, int jsh,
 | 
|---|
| 881 |                                          Ref<GaussianBasisSet> dercs,
 | 
|---|
| 882 |                                          int centernum)
 | 
|---|
| 883 | {
 | 
|---|
| 884 | 
 | 
|---|
| 885 |   /* If both ish and jsh are on the der center, then the contrib is zero. */
 | 
|---|
| 886 |   if (  (bs1_==dercs)
 | 
|---|
| 887 |       &&(bs2_==dercs)
 | 
|---|
| 888 |       &&(bs1_->shell_to_center(ish)==centernum)
 | 
|---|
| 889 |       &&(bs2_->shell_to_center(jsh)==centernum)) {
 | 
|---|
| 890 |     return;
 | 
|---|
| 891 |     }
 | 
|---|
| 892 | 
 | 
|---|
| 893 |   /* Compute the nuc attr part of the nuclear derivative. */
 | 
|---|
| 894 |   if (bs1_ == dercs) {
 | 
|---|
| 895 |     scale_shell_result = 1;
 | 
|---|
| 896 |     result_scale_factor= -bs1_->molecule()->charge(centernum);
 | 
|---|
| 897 |     for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 898 |         C[xyz] = bs1_->r(centernum,xyz);
 | 
|---|
| 899 |       }
 | 
|---|
| 900 |     //accum_shell_efield(buff,ish,jsh);
 | 
|---|
| 901 |     accum_shell_block_efield(buff,ish,jsh);
 | 
|---|
| 902 |     scale_shell_result = 0;
 | 
|---|
| 903 |     }
 | 
|---|
| 904 |   else if (bs2_ == dercs) {
 | 
|---|
| 905 |     scale_shell_result = 1;
 | 
|---|
| 906 |     result_scale_factor= -bs2_->molecule()->charge(centernum);
 | 
|---|
| 907 |     for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 908 |         C[xyz] = bs2_->r(centernum,xyz);
 | 
|---|
| 909 |       }
 | 
|---|
| 910 |     //accum_shell_efield(buff,ish,jsh);
 | 
|---|
| 911 |     accum_shell_block_efield(buff,ish,jsh);
 | 
|---|
| 912 |     scale_shell_result = 0;
 | 
|---|
| 913 |     }
 | 
|---|
| 914 | 
 | 
|---|
| 915 |   }
 | 
|---|
| 916 | 
 | 
|---|
| 917 | /* This computes the nuclear attraction derivative integrals between functions
 | 
|---|
| 918 |  * in two shells.  The result is accumulated in the buffer which is ordered
 | 
|---|
| 919 |  * atom 0 x, y, z, atom 1, ... .  Only the non Hellman-Feynman part is computed.
 | 
|---|
| 920 |  */
 | 
|---|
| 921 | void
 | 
|---|
| 922 | Int1eV3::int_accum_shell_nuclear_nonhf_1der(int ish, int jsh,
 | 
|---|
| 923 |                                             Ref<GaussianBasisSet> dercs,
 | 
|---|
| 924 |                                             int centernum)
 | 
|---|
| 925 | {
 | 
|---|
| 926 |   int i;
 | 
|---|
| 927 | 
 | 
|---|
| 928 |   /* Get the basis function part of the nuclear derivative. */
 | 
|---|
| 929 |   three_center = 1;
 | 
|---|
| 930 |   third_centers = bs1_;
 | 
|---|
| 931 |   for (i=0; i<bs1_->ncenter(); i++) {
 | 
|---|
| 932 |     third_centernum = i;
 | 
|---|
| 933 |     for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 934 |         C[xyz] = bs1_->r(i,xyz);
 | 
|---|
| 935 |       }
 | 
|---|
| 936 |     scale_shell_result = 1;
 | 
|---|
| 937 |     result_scale_factor = -bs1_->molecule()->charge(i);
 | 
|---|
| 938 |     //accum_shell_1der(buff,ish,jsh,dercs,centernum,
 | 
|---|
| 939 |     //                 &Int1eV3::comp_shell_nuclear);
 | 
|---|
| 940 |     accum_shell_block_1der(buff,ish,jsh,dercs,centernum,
 | 
|---|
| 941 |                            &Int1eV3::comp_shell_block_nuclear);
 | 
|---|
| 942 |     scale_shell_result = 0;
 | 
|---|
| 943 |     }
 | 
|---|
| 944 |   if (bs2_!=bs1_) {
 | 
|---|
| 945 |     third_centers = bs2_;
 | 
|---|
| 946 |     for (i=0; i<bs2_->ncenter(); i++) {
 | 
|---|
| 947 |       third_centernum = i;
 | 
|---|
| 948 |       for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 949 |           C[xyz] = bs2_->r(i,xyz);
 | 
|---|
| 950 |         }
 | 
|---|
| 951 |       scale_shell_result = 1;
 | 
|---|
| 952 |       result_scale_factor = -bs2_->molecule()->charge(i);
 | 
|---|
| 953 |       //accum_shell_1der(buff,ish,jsh,dercs,centernum,
 | 
|---|
| 954 |       //                 &Int1eV3::comp_shell_nuclear);
 | 
|---|
| 955 |       accum_shell_block_1der(buff,ish,jsh,dercs,centernum,
 | 
|---|
| 956 |                              &Int1eV3::comp_shell_block_nuclear);
 | 
|---|
| 957 |       scale_shell_result = 0;
 | 
|---|
| 958 |       }
 | 
|---|
| 959 |     }
 | 
|---|
| 960 |   three_center = 0;
 | 
|---|
| 961 | 
 | 
|---|
| 962 |   }
 | 
|---|
| 963 | 
 | 
|---|
| 964 | /* This computes the efield integrals between functions in two shells.
 | 
|---|
| 965 |  * The result is accumulated in the buffer in the form bf1 x y z, bf2
 | 
|---|
| 966 |  * x y z, etc.
 | 
|---|
| 967 |  */
 | 
|---|
| 968 | void
 | 
|---|
| 969 | Int1eV3::int_accum_shell_efield(int ish, int jsh,
 | 
|---|
| 970 |                                 double *position)
 | 
|---|
| 971 | {
 | 
|---|
| 972 |   scale_shell_result = 0;
 | 
|---|
| 973 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 974 |       C[xyz] = position[xyz];
 | 
|---|
| 975 |     }
 | 
|---|
| 976 |   accum_shell_efield(buff,ish,jsh);
 | 
|---|
| 977 | }
 | 
|---|
| 978 | 
 | 
|---|
| 979 | /* This computes the efield integrals between functions in two shells.
 | 
|---|
| 980 |  * The result is accumulated in the buffer in the form bf1 x y z, bf2
 | 
|---|
| 981 |  * x y z, etc.  The globals scale_shell_result, result_scale_factor,
 | 
|---|
| 982 |  * and C must be set before this is called.
 | 
|---|
| 983 |  */
 | 
|---|
| 984 | void
 | 
|---|
| 985 | Int1eV3::accum_shell_efield(double *buff, int ish, int jsh)
 | 
|---|
| 986 | {
 | 
|---|
| 987 |   int i;
 | 
|---|
| 988 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 989 |   double efield[3];
 | 
|---|
| 990 |   int gc1,gc2;
 | 
|---|
| 991 |   int index1,index2;
 | 
|---|
| 992 |   double *tmp = cartesianbuffer;
 | 
|---|
| 993 | 
 | 
|---|
| 994 |   if (!(init_order >= 1)) {
 | 
|---|
| 995 |     ExEnv::errn() << scprintf("accum_shell_efield: one electron routines are not init'ed\n");
 | 
|---|
| 996 |     exit(1);
 | 
|---|
| 997 |     }
 | 
|---|
| 998 | 
 | 
|---|
| 999 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1000 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1001 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1002 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1003 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1004 |     }
 | 
|---|
| 1005 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1006 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1007 | 
 | 
|---|
| 1008 |   FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
 | 
|---|
| 1009 |     FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
 | 
|---|
| 1010 |       comp_shell_efield(efield,gc1,i1,j1,k1,gc2,i2,j2,k2);
 | 
|---|
| 1011 |       if (scale_shell_result) {
 | 
|---|
| 1012 |         for (i=0; i<3; i++) efield[i] *= result_scale_factor;
 | 
|---|
| 1013 |         }
 | 
|---|
| 1014 |       for (i=0; i<3; i++) tmp[i] = efield[i];
 | 
|---|
| 1015 |       tmp += 3;
 | 
|---|
| 1016 |       END_FOR_GCCART_GS(index2)
 | 
|---|
| 1017 |     END_FOR_GCCART_GS(index1)
 | 
|---|
| 1018 | 
 | 
|---|
| 1019 |   accum_transform_1e_xyz(integral_,
 | 
|---|
| 1020 |                          cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 1021 |   }
 | 
|---|
| 1022 | 
 | 
|---|
| 1023 | /* This computes the efield integrals between functions in two shells.
 | 
|---|
| 1024 |  * The result is accumulated in the buffer in the form bf1 x y z, bf2
 | 
|---|
| 1025 |  * x y z, etc.  The globals scale_shell_result, result_scale_factor,
 | 
|---|
| 1026 |  * and C must be set before this is called.
 | 
|---|
| 1027 |  */
 | 
|---|
| 1028 | void
 | 
|---|
| 1029 | Int1eV3::accum_shell_block_efield(double *buff, int ish, int jsh)
 | 
|---|
| 1030 | {
 | 
|---|
| 1031 |   int c1,c2;
 | 
|---|
| 1032 |   int gc1,gc2;
 | 
|---|
| 1033 | 
 | 
|---|
| 1034 |   if (!(init_order >= 1)) {
 | 
|---|
| 1035 |     ExEnv::errn() << scprintf("accum_shell_efield: one electron routines are not init'ed\n");
 | 
|---|
| 1036 |     exit(1);
 | 
|---|
| 1037 |     }
 | 
|---|
| 1038 | 
 | 
|---|
| 1039 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1040 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1041 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1042 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1043 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1044 |     }
 | 
|---|
| 1045 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1046 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1047 | 
 | 
|---|
| 1048 |   double coef;
 | 
|---|
| 1049 |   if (scale_shell_result) coef = result_scale_factor;
 | 
|---|
| 1050 |   else coef = 1.0;
 | 
|---|
| 1051 | 
 | 
|---|
| 1052 |   int gcsize1 = gshell1->ncartesian();
 | 
|---|
| 1053 |   int gcsize2 = gshell2->ncartesian();
 | 
|---|
| 1054 |   memset(cartesianbuffer,0,sizeof(double)*gcsize1*gcsize2*3);
 | 
|---|
| 1055 |   int gcoff1 = 0;
 | 
|---|
| 1056 |   for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
 | 
|---|
| 1057 |     int a = gshell1->am(gc1);
 | 
|---|
| 1058 |     int sizea = INT_NCART_NN(a);
 | 
|---|
| 1059 |     int gcoff2 = 0;
 | 
|---|
| 1060 |     for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
 | 
|---|
| 1061 |       int b = gshell2->am(gc2);
 | 
|---|
| 1062 |       int sizeb = INT_NCART_NN(b);
 | 
|---|
| 1063 |       comp_shell_block_efield(gc1,a,gc2,b,
 | 
|---|
| 1064 |                               gcsize2, gcoff1, gcoff2,
 | 
|---|
| 1065 |                               coef, cartesianbuffer);
 | 
|---|
| 1066 |       gcoff2 += sizeb;
 | 
|---|
| 1067 |       }
 | 
|---|
| 1068 |     gcoff1 += sizea;
 | 
|---|
| 1069 |     }
 | 
|---|
| 1070 | 
 | 
|---|
| 1071 |   accum_transform_1e_xyz(integral_,
 | 
|---|
| 1072 |                          cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 1073 |   }
 | 
|---|
| 1074 | 
 | 
|---|
| 1075 | /* This computes the efield integrals between functions in two shells.
 | 
|---|
| 1076 |  * The result is placed in the buffer in the form bf1 x y z, bf2
 | 
|---|
| 1077 |  * x y z, etc.
 | 
|---|
| 1078 |  */
 | 
|---|
| 1079 | void
 | 
|---|
| 1080 | Int1eV3::efield(int ish, int jsh, double *position)
 | 
|---|
| 1081 | {
 | 
|---|
| 1082 |   scale_shell_result = 0;
 | 
|---|
| 1083 |   int xyz;
 | 
|---|
| 1084 | 
 | 
|---|
| 1085 |   for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1086 |       C[xyz] = position[xyz];
 | 
|---|
| 1087 |     }
 | 
|---|
| 1088 | 
 | 
|---|
| 1089 |   int i;
 | 
|---|
| 1090 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 1091 |   double efield[3];
 | 
|---|
| 1092 |   int gc1,gc2;
 | 
|---|
| 1093 |   int index1,index2;
 | 
|---|
| 1094 |   double *tmp = cartesianbuffer;
 | 
|---|
| 1095 | 
 | 
|---|
| 1096 |   if (!(init_order >= 1)) {
 | 
|---|
| 1097 |     ExEnv::errn() << scprintf("Int1eV3::efield one electron routines are not ready\n");
 | 
|---|
| 1098 |     exit(1);
 | 
|---|
| 1099 |     }
 | 
|---|
| 1100 | 
 | 
|---|
| 1101 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1102 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1103 |   for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1104 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1105 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1106 |     }
 | 
|---|
| 1107 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1108 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1109 | 
 | 
|---|
| 1110 |   FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
 | 
|---|
| 1111 |     FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
 | 
|---|
| 1112 |       comp_shell_efield(efield,gc1,i1,j1,k1,gc2,i2,j2,k2);
 | 
|---|
| 1113 |       if (scale_shell_result) {
 | 
|---|
| 1114 |         for (i=0; i<3; i++) efield[i] *= result_scale_factor;
 | 
|---|
| 1115 |         }
 | 
|---|
| 1116 |       for (i=0; i<3; i++) tmp[i] = efield[i];
 | 
|---|
| 1117 |       tmp += 3;
 | 
|---|
| 1118 |       END_FOR_GCCART_GS(index2)
 | 
|---|
| 1119 |     END_FOR_GCCART_GS(index1)
 | 
|---|
| 1120 | 
 | 
|---|
| 1121 |   transform_1e_xyz(integral_,
 | 
|---|
| 1122 |                    cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 1123 | }
 | 
|---|
| 1124 | 
 | 
|---|
| 1125 | /* This slowly computes the nuc rep energy integrals between functions in
 | 
|---|
| 1126 |  * two shells.  The result is placed in the buffer.  */
 | 
|---|
| 1127 | void
 | 
|---|
| 1128 | Int1eV3::nuclear_slow(int ish, int jsh)
 | 
|---|
| 1129 | {
 | 
|---|
| 1130 |   int i;
 | 
|---|
| 1131 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 1132 |   int index;
 | 
|---|
| 1133 |   int gc1,gc2;
 | 
|---|
| 1134 |   int cart1,cart2;
 | 
|---|
| 1135 | 
 | 
|---|
| 1136 |   if (!(init_order >= 0)) {
 | 
|---|
| 1137 |     ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
 | 
|---|
| 1138 |     exit(1);
 | 
|---|
| 1139 |     }
 | 
|---|
| 1140 | 
 | 
|---|
| 1141 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1142 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1143 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1144 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1145 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1146 |     }
 | 
|---|
| 1147 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1148 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1149 |   index = 0;
 | 
|---|
| 1150 | 
 | 
|---|
| 1151 |   FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
 | 
|---|
| 1152 |     FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
 | 
|---|
| 1153 |       cartesianbuffer[index] = 0.0;
 | 
|---|
| 1154 |       /* Loop thru the centers on bs1_. */
 | 
|---|
| 1155 |       for (i=0; i<bs1_->ncenter(); i++) {
 | 
|---|
| 1156 |         for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1157 |           C[xyz] = bs1_->r(i,xyz);
 | 
|---|
| 1158 |           }
 | 
|---|
| 1159 |         cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
 | 
|---|
| 1160 |                        * bs1_->molecule()->charge(i);
 | 
|---|
| 1161 |         }
 | 
|---|
| 1162 |       /* Loop thru the centers on bs2_ if necessary. */
 | 
|---|
| 1163 |       if (bs2_ != bs1_) {
 | 
|---|
| 1164 |         for (i=0; i<bs2_->ncenter(); i++) {
 | 
|---|
| 1165 |           for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1166 |             C[xyz] = bs2_->r(i,xyz);
 | 
|---|
| 1167 |             }
 | 
|---|
| 1168 |           cartesianbuffer[index]-=comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
 | 
|---|
| 1169 |                          * bs2_->molecule()->charge(i);
 | 
|---|
| 1170 |           }
 | 
|---|
| 1171 |         }
 | 
|---|
| 1172 |       index++;
 | 
|---|
| 1173 |       END_FOR_GCCART_GS(cart2)
 | 
|---|
| 1174 |     END_FOR_GCCART_GS(cart1)
 | 
|---|
| 1175 | 
 | 
|---|
| 1176 |   transform_1e(integral_,
 | 
|---|
| 1177 |                cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 1178 |   }
 | 
|---|
| 1179 | 
 | 
|---|
| 1180 | /* This computes the nuc rep energy integrals between functions in two
 | 
|---|
| 1181 |  * shells.  The result is placed in the buffer.  */
 | 
|---|
| 1182 | void
 | 
|---|
| 1183 | Int1eV3::nuclear(int ish, int jsh)
 | 
|---|
| 1184 | {
 | 
|---|
| 1185 |   int i;
 | 
|---|
| 1186 |   int c1,c2;
 | 
|---|
| 1187 |   int gc1,gc2;
 | 
|---|
| 1188 | 
 | 
|---|
| 1189 |   if (!(init_order >= 0)) {
 | 
|---|
| 1190 |     ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
 | 
|---|
| 1191 |     exit(1);
 | 
|---|
| 1192 |     }
 | 
|---|
| 1193 | 
 | 
|---|
| 1194 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1195 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1196 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1197 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1198 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1199 |     }
 | 
|---|
| 1200 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1201 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1202 | 
 | 
|---|
| 1203 |   int ni = gshell1->ncartesian();
 | 
|---|
| 1204 |   int nj = gshell2->ncartesian();
 | 
|---|
| 1205 |   memset(cartesianbuffer,0,sizeof(double)*ni*nj);
 | 
|---|
| 1206 | 
 | 
|---|
| 1207 |   int offi = 0;
 | 
|---|
| 1208 |   for (gc1=0; gc1<gshell1->ncontraction(); gc1++) {
 | 
|---|
| 1209 |     int a = gshell1->am(gc1);
 | 
|---|
| 1210 |     int offj = 0;
 | 
|---|
| 1211 |     for (gc2=0; gc2<gshell2->ncontraction(); gc2++) {
 | 
|---|
| 1212 |       int b = gshell2->am(gc2);
 | 
|---|
| 1213 |       /* Loop thru the centers on bs1_. */
 | 
|---|
| 1214 |       for (i=0; i<bs1_->ncenter(); i++) {
 | 
|---|
| 1215 |         double charge = bs1_->molecule()->charge(i);
 | 
|---|
| 1216 |         for (int xyz=0; xyz<3; xyz++) C[xyz] = bs1_->r(i,xyz);
 | 
|---|
| 1217 |         comp_shell_block_nuclear(gc1, a, gc2, b,
 | 
|---|
| 1218 |                                  nj, offi, offj,
 | 
|---|
| 1219 |                                  -charge, cartesianbuffer);
 | 
|---|
| 1220 |         }
 | 
|---|
| 1221 |       /* Loop thru the centers on bs2_ if necessary. */
 | 
|---|
| 1222 |       if (bs2_ != bs1_) {
 | 
|---|
| 1223 |         for (i=0; i<bs2_->ncenter(); i++) {
 | 
|---|
| 1224 |           double charge = bs2_->molecule()->charge(i);
 | 
|---|
| 1225 |           for (int xyz=0; xyz<3; xyz++) C[xyz] = bs2_->r(i,xyz);
 | 
|---|
| 1226 |           comp_shell_block_nuclear(gc1, a, gc2, b,
 | 
|---|
| 1227 |                                    nj, offi, offj,
 | 
|---|
| 1228 |                                    -charge, cartesianbuffer);
 | 
|---|
| 1229 |           }
 | 
|---|
| 1230 |         }
 | 
|---|
| 1231 |       offj += INT_NCART_NN(b);
 | 
|---|
| 1232 |       }
 | 
|---|
| 1233 |     offi += INT_NCART_NN(a);
 | 
|---|
| 1234 |     }
 | 
|---|
| 1235 | 
 | 
|---|
| 1236 | #if DEBUG_NUC_SHELL
 | 
|---|
| 1237 |   double *fastbuf = new double[ni*nj];
 | 
|---|
| 1238 |   memcpy(fastbuf,cartesianbuffer,sizeof(double)*ni*nj);
 | 
|---|
| 1239 |   nuclear_slow(ish,jsh);
 | 
|---|
| 1240 | 
 | 
|---|
| 1241 |   index = 0;
 | 
|---|
| 1242 |   int cart1, cart2;
 | 
|---|
| 1243 |   FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1) {
 | 
|---|
| 1244 |     FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2) {
 | 
|---|
| 1245 |       double fast = fastbuf[index];
 | 
|---|
| 1246 |       double slow = cartesianbuffer[index];
 | 
|---|
| 1247 |       if (fabs(fast-slow)>1.0e-12) {
 | 
|---|
| 1248 |         ExEnv::outn() << scprintf("NUC SHELL FINAL: %d (%d %d %d) %d (%d %d %d): ",
 | 
|---|
| 1249 |                          gc1, i1,j1,k1, gc2, i2,j2,k2)
 | 
|---|
| 1250 |              << scprintf(" % 20.15f % 20.15f",
 | 
|---|
| 1251 |                          fast, slow)
 | 
|---|
| 1252 |              << endl;
 | 
|---|
| 1253 |         }
 | 
|---|
| 1254 |       index++;
 | 
|---|
| 1255 |       } END_FOR_GCCART_GS(cart2);
 | 
|---|
| 1256 |     } END_FOR_GCCART_GS(cart1);
 | 
|---|
| 1257 | 
 | 
|---|
| 1258 |   memcpy(cartesianbuffer,fastbuf,sizeof(double)*ni*nj);
 | 
|---|
| 1259 |   delete[] fastbuf;
 | 
|---|
| 1260 | #endif
 | 
|---|
| 1261 | 
 | 
|---|
| 1262 |   transform_1e(integral_,
 | 
|---|
| 1263 |                cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 1264 |   }
 | 
|---|
| 1265 | 
 | 
|---|
| 1266 | /* This computes the integrals between functions in two shells for
 | 
|---|
| 1267 |  * a point charge interaction operator.
 | 
|---|
| 1268 |  * The result is placed in the buffer.
 | 
|---|
| 1269 |  */
 | 
|---|
| 1270 | void
 | 
|---|
| 1271 | Int1eV3::int_accum_shell_point_charge(int ish, int jsh,
 | 
|---|
| 1272 |                                       int ncharge, const double* charge,
 | 
|---|
| 1273 |                                       const double*const* position)
 | 
|---|
| 1274 | {
 | 
|---|
| 1275 |   int i;
 | 
|---|
| 1276 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 1277 |   int index;
 | 
|---|
| 1278 |   int gc1,gc2;
 | 
|---|
| 1279 |   int cart1,cart2;
 | 
|---|
| 1280 |   double tmp;
 | 
|---|
| 1281 | 
 | 
|---|
| 1282 |   if (!(init_order >= 0)) {
 | 
|---|
| 1283 |     ExEnv::errn() << scprintf("int_shell_pointcharge: one electron routines are not init'ed\n");
 | 
|---|
| 1284 |     exit(1);
 | 
|---|
| 1285 |     }
 | 
|---|
| 1286 | 
 | 
|---|
| 1287 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1288 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1289 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1290 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1291 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1292 |     }
 | 
|---|
| 1293 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1294 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1295 |   index = 0;
 | 
|---|
| 1296 | 
 | 
|---|
| 1297 |   FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
 | 
|---|
| 1298 |     FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
 | 
|---|
| 1299 |       /* Loop thru the point charges. */
 | 
|---|
| 1300 |       tmp = 0.0;
 | 
|---|
| 1301 |       for (i=0; i<ncharge; i++) {
 | 
|---|
| 1302 |           for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1303 |               C[xyz] = position[i][xyz];
 | 
|---|
| 1304 |             }
 | 
|---|
| 1305 |         tmp -=  comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
 | 
|---|
| 1306 |                        * charge[i];
 | 
|---|
| 1307 |         }
 | 
|---|
| 1308 |       cartesianbuffer[index] = tmp;
 | 
|---|
| 1309 |       index++;
 | 
|---|
| 1310 |       END_FOR_GCCART_GS(cart2)
 | 
|---|
| 1311 |     END_FOR_GCCART_GS(cart1)
 | 
|---|
| 1312 | 
 | 
|---|
| 1313 |   accum_transform_1e(integral_,
 | 
|---|
| 1314 |                      cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 1315 |   }
 | 
|---|
| 1316 | 
 | 
|---|
| 1317 | /* This computes the integrals between functions in two shells for
 | 
|---|
| 1318 |  * a point charge interaction operator.
 | 
|---|
| 1319 |  * The result is placed in the buffer.
 | 
|---|
| 1320 |  */
 | 
|---|
| 1321 | void
 | 
|---|
| 1322 | Int1eV3::point_charge(int ish, int jsh,
 | 
|---|
| 1323 |                       int ncharge,
 | 
|---|
| 1324 |                       const double* charge, const double*const* position)
 | 
|---|
| 1325 | {
 | 
|---|
| 1326 |   int i;
 | 
|---|
| 1327 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 1328 |   int index;
 | 
|---|
| 1329 |   int gc1,gc2;
 | 
|---|
| 1330 |   int cart1,cart2;
 | 
|---|
| 1331 | 
 | 
|---|
| 1332 |   if (!(init_order >= 0)) {
 | 
|---|
| 1333 |     ExEnv::errn() << scprintf("Int1eV3::point_charge: one electron routines are not init'ed\n");
 | 
|---|
| 1334 |     exit(1);
 | 
|---|
| 1335 |     }
 | 
|---|
| 1336 | 
 | 
|---|
| 1337 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1338 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1339 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1340 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1341 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1342 |     }
 | 
|---|
| 1343 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1344 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1345 |   index = 0;
 | 
|---|
| 1346 | 
 | 
|---|
| 1347 |   FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
 | 
|---|
| 1348 |     FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
 | 
|---|
| 1349 |       cartesianbuffer[index] = 0.0;
 | 
|---|
| 1350 |       /* Loop thru the point charges. */
 | 
|---|
| 1351 |       for (i=0; i<ncharge; i++) {
 | 
|---|
| 1352 |         for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1353 |           C[xyz] = position[i][xyz];
 | 
|---|
| 1354 |           }
 | 
|---|
| 1355 |         cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
 | 
|---|
| 1356 |                                 * charge[i];
 | 
|---|
| 1357 |         }
 | 
|---|
| 1358 |       index++;
 | 
|---|
| 1359 |       END_FOR_GCCART_GS(cart2)
 | 
|---|
| 1360 |     END_FOR_GCCART_GS(cart1)
 | 
|---|
| 1361 | 
 | 
|---|
| 1362 |   transform_1e(integral_,
 | 
|---|
| 1363 |                cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 1364 |   }
 | 
|---|
| 1365 | 
 | 
|---|
| 1366 | 
 | 
|---|
| 1367 | /* This computes the 1e Hamiltonian integrals between functions in two shells.
 | 
|---|
| 1368 |  * The result is placed in the buffer.
 | 
|---|
| 1369 |  */
 | 
|---|
| 1370 | void
 | 
|---|
| 1371 | Int1eV3::hcore(int ish, int jsh)
 | 
|---|
| 1372 | {
 | 
|---|
| 1373 |   int i;
 | 
|---|
| 1374 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 1375 |   int index;
 | 
|---|
| 1376 |   int cart1,cart2;
 | 
|---|
| 1377 |   int gc1,gc2;
 | 
|---|
| 1378 | 
 | 
|---|
| 1379 |   if (!(init_order >= 0)) {
 | 
|---|
| 1380 |     ExEnv::errn() << scprintf("hcore: one electron routines are not init'ed\n");
 | 
|---|
| 1381 |     exit(1);
 | 
|---|
| 1382 |     }
 | 
|---|
| 1383 | 
 | 
|---|
| 1384 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1385 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1386 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1387 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1388 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1389 |     }
 | 
|---|
| 1390 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1391 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1392 | 
 | 
|---|
| 1393 |   index = 0;
 | 
|---|
| 1394 |   FOR_GCCART_GS(gc1,cart1,i1,j1,k1,gshell1)
 | 
|---|
| 1395 |     FOR_GCCART_GS(gc2,cart2,i2,j2,k2,gshell2)
 | 
|---|
| 1396 |       cartesianbuffer[index] = comp_shell_kinetic(gc1,i1,j1,k1,gc2,i2,j2,k2);
 | 
|---|
| 1397 |       /* Loop thru the centers on bs1_. */
 | 
|---|
| 1398 |       for (i=0; i<bs1_->ncenter(); i++) {
 | 
|---|
| 1399 |         for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1400 |           C[xyz] = bs1_->r(i,xyz);
 | 
|---|
| 1401 |           }
 | 
|---|
| 1402 |         cartesianbuffer[index] -= comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
 | 
|---|
| 1403 |                                 * bs1_->molecule()->charge(i);
 | 
|---|
| 1404 |         }
 | 
|---|
| 1405 |       /* Loop thru the centers on bs2_ if necessary. */
 | 
|---|
| 1406 |       if (bs2_ != bs1_) {
 | 
|---|
| 1407 |         for (i=0; i<bs2_->ncenter(); i++) {
 | 
|---|
| 1408 |           for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1409 |             C[xyz] = bs2_->r(i,xyz);
 | 
|---|
| 1410 |             }
 | 
|---|
| 1411 |           cartesianbuffer[index]-=comp_shell_nuclear(gc1,i1,j1,k1,gc2,i2,j2,k2)
 | 
|---|
| 1412 |                                 * bs2_->molecule()->charge(i);
 | 
|---|
| 1413 |           }
 | 
|---|
| 1414 |         }
 | 
|---|
| 1415 |       index++;
 | 
|---|
| 1416 |       END_FOR_GCCART_GS(cart2)
 | 
|---|
| 1417 |     END_FOR_GCCART_GS(cart1)
 | 
|---|
| 1418 | 
 | 
|---|
| 1419 |   transform_1e(integral_,
 | 
|---|
| 1420 |                cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 1421 |   }
 | 
|---|
| 1422 | 
 | 
|---|
| 1423 | /* This computes the 1e Hamiltonian deriv ints between functions in two shells.
 | 
|---|
| 1424 |  * The result is placed in the buffer.
 | 
|---|
| 1425 |  */
 | 
|---|
| 1426 | void
 | 
|---|
| 1427 | Int1eV3::hcore_1der(int ish, int jsh,
 | 
|---|
| 1428 |                     int idercs, int centernum)
 | 
|---|
| 1429 | {
 | 
|---|
| 1430 |   int i;
 | 
|---|
| 1431 |   int c1,c2;
 | 
|---|
| 1432 |   int ni,nj;
 | 
|---|
| 1433 | 
 | 
|---|
| 1434 |   if (!(init_order >= 0)) {
 | 
|---|
| 1435 |     ExEnv::errn() << scprintf("int_shell_hcore: one electron routines are not init'ed\n");
 | 
|---|
| 1436 |     exit(1);
 | 
|---|
| 1437 |     }
 | 
|---|
| 1438 | 
 | 
|---|
| 1439 |   Ref<GaussianBasisSet> dercs;
 | 
|---|
| 1440 |   if (idercs == 0) dercs = bs1_;
 | 
|---|
| 1441 |   else dercs = bs2_;
 | 
|---|
| 1442 | 
 | 
|---|
| 1443 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1444 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1445 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1446 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1447 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1448 |     }
 | 
|---|
| 1449 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1450 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1451 | 
 | 
|---|
| 1452 |   ni = gshell1->nfunction();
 | 
|---|
| 1453 |   nj = gshell2->nfunction();
 | 
|---|
| 1454 | 
 | 
|---|
| 1455 |   for (i=0; i<ni*nj*3; i++) {
 | 
|---|
| 1456 |     buff[i] = 0.0;
 | 
|---|
| 1457 |     }
 | 
|---|
| 1458 | 
 | 
|---|
| 1459 |   int_accum_shell_nuclear_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 1460 |   int_accum_shell_kinetic_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 1461 |   }
 | 
|---|
| 1462 | 
 | 
|---|
| 1463 | /* This computes the kinetic deriv ints between functions in two shells.
 | 
|---|
| 1464 |  * The result is placed in the buffer.
 | 
|---|
| 1465 |  */
 | 
|---|
| 1466 | void
 | 
|---|
| 1467 | Int1eV3::kinetic_1der(int ish, int jsh,
 | 
|---|
| 1468 |                       int idercs, int centernum)
 | 
|---|
| 1469 | {
 | 
|---|
| 1470 |   int i;
 | 
|---|
| 1471 |   int c1,c2;
 | 
|---|
| 1472 |   int ni,nj;
 | 
|---|
| 1473 | 
 | 
|---|
| 1474 |   if (!(init_order >= 0)) {
 | 
|---|
| 1475 |     ExEnv::errn() << scprintf("int_shell_kinetic: one electron routines are not init'ed\n");
 | 
|---|
| 1476 |     exit(1);
 | 
|---|
| 1477 |     }
 | 
|---|
| 1478 | 
 | 
|---|
| 1479 |   Ref<GaussianBasisSet> dercs;
 | 
|---|
| 1480 |   if (idercs == 0) dercs = bs1_;
 | 
|---|
| 1481 |   else dercs = bs2_;
 | 
|---|
| 1482 | 
 | 
|---|
| 1483 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1484 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1485 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1486 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1487 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1488 |     }
 | 
|---|
| 1489 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1490 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1491 | 
 | 
|---|
| 1492 |   ni = gshell1->nfunction();
 | 
|---|
| 1493 |   nj = gshell2->nfunction();
 | 
|---|
| 1494 | 
 | 
|---|
| 1495 |   for (i=0; i<ni*nj*3; i++) {
 | 
|---|
| 1496 |     buff[i] = 0.0;
 | 
|---|
| 1497 |     }
 | 
|---|
| 1498 | 
 | 
|---|
| 1499 |   int_accum_shell_kinetic_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 1500 |   }
 | 
|---|
| 1501 | 
 | 
|---|
| 1502 | /* This computes the nuclear deriv ints between functions in two shells.
 | 
|---|
| 1503 |  * The result is placed in the buffer.
 | 
|---|
| 1504 |  */
 | 
|---|
| 1505 | void
 | 
|---|
| 1506 | Int1eV3::nuclear_1der(int ish, int jsh, int idercs, int centernum)
 | 
|---|
| 1507 | {
 | 
|---|
| 1508 |   int i;
 | 
|---|
| 1509 |   int c1,c2;
 | 
|---|
| 1510 |   int ni,nj;
 | 
|---|
| 1511 | 
 | 
|---|
| 1512 |   if (!(init_order >= 0)) {
 | 
|---|
| 1513 |     ExEnv::errn() << scprintf("int_shell_nuclear: one electron routines are not init'ed\n");
 | 
|---|
| 1514 |     exit(1);
 | 
|---|
| 1515 |     }
 | 
|---|
| 1516 | 
 | 
|---|
| 1517 |   Ref<GaussianBasisSet> dercs;
 | 
|---|
| 1518 |   if (idercs == 0) dercs = bs1_;
 | 
|---|
| 1519 |   else dercs = bs2_;
 | 
|---|
| 1520 | 
 | 
|---|
| 1521 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1522 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1523 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1524 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1525 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1526 |     }
 | 
|---|
| 1527 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1528 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1529 | 
 | 
|---|
| 1530 |   ni = gshell1->nfunction();
 | 
|---|
| 1531 |   nj = gshell2->nfunction();
 | 
|---|
| 1532 | 
 | 
|---|
| 1533 |   for (i=0; i<ni*nj*3; i++) {
 | 
|---|
| 1534 |     buff[i] = 0.0;
 | 
|---|
| 1535 |     }
 | 
|---|
| 1536 | 
 | 
|---|
| 1537 |   int_accum_shell_nuclear_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 1538 |   }
 | 
|---|
| 1539 | 
 | 
|---|
| 1540 | /* This computes the nuclear deriv ints between functions in two shells.
 | 
|---|
| 1541 |  * Only the Hellman-Feynman part is computed.
 | 
|---|
| 1542 |  * The result is placed in the buffer.
 | 
|---|
| 1543 |  */
 | 
|---|
| 1544 | void
 | 
|---|
| 1545 | Int1eV3::int_shell_nuclear_hf_1der(int ish, int jsh,
 | 
|---|
| 1546 |                                    Ref<GaussianBasisSet> dercs, int centernum)
 | 
|---|
| 1547 | {
 | 
|---|
| 1548 |   int i;
 | 
|---|
| 1549 |   int c1,c2;
 | 
|---|
| 1550 |   int ni,nj;
 | 
|---|
| 1551 | 
 | 
|---|
| 1552 |   if (!(init_order >= 0)) {
 | 
|---|
| 1553 |     ExEnv::errn() << scprintf("int_shell_nuclear_hf_1der: one electron routines are not init'ed\n");
 | 
|---|
| 1554 |     exit(1);
 | 
|---|
| 1555 |     }
 | 
|---|
| 1556 | 
 | 
|---|
| 1557 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1558 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1559 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1560 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1561 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1562 |     }
 | 
|---|
| 1563 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1564 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1565 | 
 | 
|---|
| 1566 |   ni = gshell1->nfunction();
 | 
|---|
| 1567 |   nj = gshell2->nfunction();
 | 
|---|
| 1568 | 
 | 
|---|
| 1569 |   for (i=0; i<ni*nj*3; i++) {
 | 
|---|
| 1570 |     buff[i] = 0.0;
 | 
|---|
| 1571 |     }
 | 
|---|
| 1572 | 
 | 
|---|
| 1573 |   int_accum_shell_nuclear_hf_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 1574 |   }
 | 
|---|
| 1575 | 
 | 
|---|
| 1576 | /* This computes the nuclear deriv ints between functions in two shells.
 | 
|---|
| 1577 |  * Only the non Hellman-Feynman part is computed.
 | 
|---|
| 1578 |  * The result is placed in the buffer.
 | 
|---|
| 1579 |  */
 | 
|---|
| 1580 | void
 | 
|---|
| 1581 | Int1eV3::int_shell_nuclear_nonhf_1der(int ish, int jsh,
 | 
|---|
| 1582 |                                       Ref<GaussianBasisSet> dercs, int centernum)
 | 
|---|
| 1583 | {
 | 
|---|
| 1584 |   int i;
 | 
|---|
| 1585 |   int c1,c2;
 | 
|---|
| 1586 |   int ni,nj;
 | 
|---|
| 1587 | 
 | 
|---|
| 1588 |   if (!(init_order >= 0)) {
 | 
|---|
| 1589 |     ExEnv::errn() << scprintf("int_shell_nuclear_nonhf_1der: one electron routines are not init'ed\n");
 | 
|---|
| 1590 |     exit(1);
 | 
|---|
| 1591 |     }
 | 
|---|
| 1592 | 
 | 
|---|
| 1593 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 1594 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 1595 |   for (int xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1596 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 1597 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 1598 |     }
 | 
|---|
| 1599 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 1600 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 1601 | 
 | 
|---|
| 1602 |   ni = gshell1->nfunction();
 | 
|---|
| 1603 |   nj = gshell2->nfunction();
 | 
|---|
| 1604 | 
 | 
|---|
| 1605 | #if 0
 | 
|---|
| 1606 |   ExEnv::outn() << scprintf("int_shell_nuclear_nonhf_1der: zeroing %d doubles in buff\n",ni*nj*3);
 | 
|---|
| 1607 | #endif
 | 
|---|
| 1608 |   for (i=0; i<ni*nj*3; i++) {
 | 
|---|
| 1609 |     buff[i] = 0.0;
 | 
|---|
| 1610 |     }
 | 
|---|
| 1611 | 
 | 
|---|
| 1612 |   int_accum_shell_nuclear_nonhf_1der(ish,jsh,dercs,centernum);
 | 
|---|
| 1613 |   }
 | 
|---|
| 1614 | 
 | 
|---|
| 1615 | /* Compute the nuclear attraction for the shell.  The arguments are the
 | 
|---|
| 1616 |  * cartesian exponents for centers 1 and 2.  The shell1 and shell2
 | 
|---|
| 1617 |  * globals are used. */
 | 
|---|
| 1618 | double
 | 
|---|
| 1619 | Int1eV3::comp_shell_nuclear(int gc1, int i1, int j1, int k1,
 | 
|---|
| 1620 |                           int gc2, int i2, int j2, int k2)
 | 
|---|
| 1621 | {
 | 
|---|
| 1622 |   int i,j,k,xyz;
 | 
|---|
| 1623 |   double result;
 | 
|---|
| 1624 |   double Pi;
 | 
|---|
| 1625 |   double oozeta;
 | 
|---|
| 1626 |   double AmB,AmB2;
 | 
|---|
| 1627 |   double PmC2;
 | 
|---|
| 1628 |   double auxcoef;
 | 
|---|
| 1629 |   int am;
 | 
|---|
| 1630 |   double tmp;
 | 
|---|
| 1631 | 
 | 
|---|
| 1632 |   am = i1+j1+k1+i2+j2+k2;
 | 
|---|
| 1633 | 
 | 
|---|
| 1634 |   /* Loop over the primitives in the shells. */
 | 
|---|
| 1635 |   result = 0.0;
 | 
|---|
| 1636 |   for (i=0; i<gshell1->nprimitive(); i++) {
 | 
|---|
| 1637 |     for (j=0; j<gshell2->nprimitive(); j++) {
 | 
|---|
| 1638 | 
 | 
|---|
| 1639 |       /* Compute the intermediates. */
 | 
|---|
| 1640 |       zeta = gshell1->exponent(i) + gshell2->exponent(j);
 | 
|---|
| 1641 |       oozeta = 1.0/zeta;
 | 
|---|
| 1642 |       oo2zeta = 0.5*oozeta;
 | 
|---|
| 1643 |       AmB2 = 0.0;
 | 
|---|
| 1644 |       PmC2 = 0.0;
 | 
|---|
| 1645 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1646 |         Pi = oozeta*(gshell1->exponent(i) * A[xyz]
 | 
|---|
| 1647 |                      + gshell2->exponent(j) * B[xyz]);
 | 
|---|
| 1648 |         PmA[xyz] = Pi - A[xyz];
 | 
|---|
| 1649 |         PmB[xyz] = Pi - B[xyz];
 | 
|---|
| 1650 |         PmC[xyz] = Pi - C[xyz];
 | 
|---|
| 1651 |         AmB = A[xyz] - B[xyz];
 | 
|---|
| 1652 |         AmB2 += AmB*AmB;
 | 
|---|
| 1653 |         PmC2 += PmC[xyz]*PmC[xyz];
 | 
|---|
| 1654 |         }
 | 
|---|
| 1655 | 
 | 
|---|
| 1656 |       /* The auxillary integral coeficients. */
 | 
|---|
| 1657 |       auxcoef =   2.0 * M_PI/(gshell1->exponent(i)
 | 
|---|
| 1658 |                                            +gshell2->exponent(j))
 | 
|---|
| 1659 |            * exp(- oozeta * gshell1->exponent(i)
 | 
|---|
| 1660 |                  * gshell2->exponent(j) * AmB2);
 | 
|---|
| 1661 | 
 | 
|---|
| 1662 |       /* The Fm(U) intermediates. */
 | 
|---|
| 1663 |       fjttable_ = fjt_->values(am,zeta*PmC2);
 | 
|---|
| 1664 | 
 | 
|---|
| 1665 |       /* Convert the Fm(U) intermediates into the auxillary
 | 
|---|
| 1666 |        * nuclear attraction integrals. */
 | 
|---|
| 1667 |       for (k=0; k<=am; k++) {
 | 
|---|
| 1668 |         fjttable_[k] *= auxcoef;
 | 
|---|
| 1669 |         }
 | 
|---|
| 1670 | 
 | 
|---|
| 1671 |       /* Compute the nuclear attraction integral. */
 | 
|---|
| 1672 |       tmp     =  gshell1->coefficient_unnorm(gc1,i)
 | 
|---|
| 1673 |                * gshell2->coefficient_unnorm(gc2,j)
 | 
|---|
| 1674 |                * comp_prim_nuclear(i1,j1,k1,i2,j2,k2,0);
 | 
|---|
| 1675 | 
 | 
|---|
| 1676 |       if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
 | 
|---|
| 1677 |       else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
 | 
|---|
| 1678 | 
 | 
|---|
| 1679 |       result += tmp;
 | 
|---|
| 1680 |       }
 | 
|---|
| 1681 |     }
 | 
|---|
| 1682 | 
 | 
|---|
| 1683 |   /* printf("comp_shell_nuclear(%d,%d,%d,%d,%d,%d): result = % 12.8lf\n",
 | 
|---|
| 1684 |    *         i1,j1,k1,i2,j2,k2,result);
 | 
|---|
| 1685 |    */
 | 
|---|
| 1686 |   return result;
 | 
|---|
| 1687 |   }
 | 
|---|
| 1688 | 
 | 
|---|
| 1689 | /* Compute the nuclear attraction for the shell.  The arguments are the
 | 
|---|
| 1690 |  * cartesian exponents for centers 1 and 2.  The shell1 and shell2
 | 
|---|
| 1691 |  * globals are used. */
 | 
|---|
| 1692 | void
 | 
|---|
| 1693 | Int1eV3::comp_shell_block_nuclear(int gc1, int a, int gc2, int b,
 | 
|---|
| 1694 |                                   int gcsize2, int gcoff1, int gcoff2,
 | 
|---|
| 1695 |                                   double coef, double *buffer)
 | 
|---|
| 1696 | {
 | 
|---|
| 1697 |   int i,j,k,xyz;
 | 
|---|
| 1698 |   double Pi;
 | 
|---|
| 1699 |   double oozeta;
 | 
|---|
| 1700 |   double AmB,AmB2;
 | 
|---|
| 1701 |   double PmC2;
 | 
|---|
| 1702 |   double auxcoef;
 | 
|---|
| 1703 |   double tmp;
 | 
|---|
| 1704 |   int am = a + b;
 | 
|---|
| 1705 |   int size1 = INT_NCART_NN(a);
 | 
|---|
| 1706 |   int size2 = INT_NCART_NN(b);
 | 
|---|
| 1707 | 
 | 
|---|
| 1708 | #if DEBUG_NUC_SHELL
 | 
|---|
| 1709 |   double *shellints = new double[size1*size2];
 | 
|---|
| 1710 |   memset(shellints,0,sizeof(double)*size1*size2);
 | 
|---|
| 1711 | #endif
 | 
|---|
| 1712 | 
 | 
|---|
| 1713 |   /* Loop over the primitives in the shells. */
 | 
|---|
| 1714 |   for (i=0; i<gshell1->nprimitive(); i++) {
 | 
|---|
| 1715 |     for (j=0; j<gshell2->nprimitive(); j++) {
 | 
|---|
| 1716 | 
 | 
|---|
| 1717 |       /* Compute the intermediates. */
 | 
|---|
| 1718 |       zeta = gshell1->exponent(i) + gshell2->exponent(j);
 | 
|---|
| 1719 |       oozeta = 1.0/zeta;
 | 
|---|
| 1720 |       oo2zeta = 0.5*oozeta;
 | 
|---|
| 1721 |       AmB2 = 0.0;
 | 
|---|
| 1722 |       PmC2 = 0.0;
 | 
|---|
| 1723 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 1724 |         Pi = oozeta*(gshell1->exponent(i) * A[xyz]
 | 
|---|
| 1725 |                      + gshell2->exponent(j) * B[xyz]);
 | 
|---|
| 1726 |         PmA[xyz] = Pi - A[xyz];
 | 
|---|
| 1727 |         PmB[xyz] = Pi - B[xyz];
 | 
|---|
| 1728 |         PmC[xyz] = Pi - C[xyz];
 | 
|---|
| 1729 |         AmB = A[xyz] - B[xyz];
 | 
|---|
| 1730 |         AmB2 += AmB*AmB;
 | 
|---|
| 1731 |         PmC2 += PmC[xyz]*PmC[xyz];
 | 
|---|
| 1732 |         }
 | 
|---|
| 1733 | 
 | 
|---|
| 1734 |       /* The auxillary integral coeficients. */
 | 
|---|
| 1735 |       auxcoef =   2.0 * M_PI/(gshell1->exponent(i)
 | 
|---|
| 1736 |                                            +gshell2->exponent(j))
 | 
|---|
| 1737 |            * exp(- oozeta * gshell1->exponent(i)
 | 
|---|
| 1738 |                  * gshell2->exponent(j) * AmB2);
 | 
|---|
| 1739 | 
 | 
|---|
| 1740 |       /* The Fm(U) intermediates. */
 | 
|---|
| 1741 |       fjttable_ = fjt_->values(am,zeta*PmC2);
 | 
|---|
| 1742 | 
 | 
|---|
| 1743 |       /* Convert the Fm(U) intermediates into the auxillary
 | 
|---|
| 1744 |        * nuclear attraction integrals. */
 | 
|---|
| 1745 |       for (k=0; k<=am; k++) {
 | 
|---|
| 1746 |         fjttable_[k] *= auxcoef;
 | 
|---|
| 1747 |         }
 | 
|---|
| 1748 | 
 | 
|---|
| 1749 |       /* Compute the primitive nuclear attraction integral. */
 | 
|---|
| 1750 |       comp_prim_block_nuclear(a,b);
 | 
|---|
| 1751 | 
 | 
|---|
| 1752 |       tmp =  gshell1->coefficient_unnorm(gc1,i)
 | 
|---|
| 1753 |              * gshell2->coefficient_unnorm(gc2,j)
 | 
|---|
| 1754 |              * coef;
 | 
|---|
| 1755 | 
 | 
|---|
| 1756 |       if (exponent_weighted == 0) tmp *= gshell1->exponent(i);
 | 
|---|
| 1757 |       else if (exponent_weighted == 1) tmp *= gshell2->exponent(j);
 | 
|---|
| 1758 | 
 | 
|---|
| 1759 | #if DEBUG_NUC_SHELL
 | 
|---|
| 1760 |       double *tprimbuffer = inter(a,b,0);
 | 
|---|
| 1761 |       double *tmpshellints = shellints;
 | 
|---|
| 1762 |       for (int ip=0; ip<size1; ip++) {
 | 
|---|
| 1763 |         for (int jp=0; jp<size2; jp++) {
 | 
|---|
| 1764 |           *tmpshellints++ += tmp * *tprimbuffer++ / coef;
 | 
|---|
| 1765 |           }
 | 
|---|
| 1766 |         }
 | 
|---|
| 1767 | #endif
 | 
|---|
| 1768 |       double *primbuffer = inter(a,b,0);
 | 
|---|
| 1769 |       for (int ip=0; ip<size1; ip++) {
 | 
|---|
| 1770 |         for (int jp=0; jp<size2; jp++) {
 | 
|---|
| 1771 |           //ExEnv::outn() << scprintf("buffer[%d] += %18.15f",
 | 
|---|
| 1772 |           //                 (ip+gcoff1)*gcsize2+jp+gcoff2,
 | 
|---|
| 1773 |           //                 tmp * *primbuffer)
 | 
|---|
| 1774 |           //     << endl;
 | 
|---|
| 1775 |           buffer[(ip+gcoff1)*gcsize2+jp+gcoff2] += tmp * *primbuffer++;
 | 
|---|
| 1776 |           }
 | 
|---|
| 1777 |         }
 | 
|---|
| 1778 |       }
 | 
|---|
| 1779 |     }
 | 
|---|
| 1780 | 
 | 
|---|
| 1781 | #if DEBUG_NUC_SHELL
 | 
|---|
| 1782 | #  if DEBUG_NUC_SHELL > 1
 | 
|---|
| 1783 |   ExEnv::outn() << scprintf("GC = (%d %d), A = %d, B = %d", gc1, gc2, a, b)
 | 
|---|
| 1784 |        << endl;
 | 
|---|
| 1785 | #  endif
 | 
|---|
| 1786 |   int i1,j1,k1;
 | 
|---|
| 1787 |   int i2,j2,k2;
 | 
|---|
| 1788 |   int ip = 0;
 | 
|---|
| 1789 |   double *tmpshellints = shellints;
 | 
|---|
| 1790 |   FOR_CART(i1,j1,k1,a) {
 | 
|---|
| 1791 |     int jp = 0;
 | 
|---|
| 1792 |     FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 1793 |       double fast = *tmpshellints++;
 | 
|---|
| 1794 |       double slow = comp_shell_nuclear(gc1, i1, j1, k1,
 | 
|---|
| 1795 |                                        gc2, i2, j2, k2);
 | 
|---|
| 1796 |       int bad = fabs(fast-slow)>1.0e-12;
 | 
|---|
| 1797 |       if (DEBUG_NUC_SHELL > 1 || bad) {
 | 
|---|
| 1798 |         ExEnv::outn() << scprintf("NUC SHELL: (%d %d %d) (%d %d %d): ",
 | 
|---|
| 1799 |                          i1,j1,k1, i2,j2,k2)
 | 
|---|
| 1800 |              << scprintf(" % 20.15f % 20.15f",
 | 
|---|
| 1801 |                          fast, slow);
 | 
|---|
| 1802 |         }
 | 
|---|
| 1803 |       if (bad) {
 | 
|---|
| 1804 |         ExEnv::outn() << " ****" << endl;
 | 
|---|
| 1805 |         }
 | 
|---|
| 1806 |       else if (DEBUG_NUC_SHELL > 1) {
 | 
|---|
| 1807 |         ExEnv::outn() << endl;
 | 
|---|
| 1808 |         }
 | 
|---|
| 1809 |       jp++;
 | 
|---|
| 1810 |       } END_FOR_CART;
 | 
|---|
| 1811 |     ip++;
 | 
|---|
| 1812 |     } END_FOR_CART;
 | 
|---|
| 1813 |   delete[] shellints;
 | 
|---|
| 1814 | #endif
 | 
|---|
| 1815 |   }
 | 
|---|
| 1816 | 
 | 
|---|
| 1817 | void
 | 
|---|
| 1818 | Int1eV3::comp_prim_block_nuclear(int a, int b)
 | 
|---|
| 1819 | {
 | 
|---|
| 1820 |   int im, ia, ib;
 | 
|---|
| 1821 |   int l = a + b;
 | 
|---|
| 1822 | 
 | 
|---|
| 1823 |   // fill in the ia+ib=0 integrals
 | 
|---|
| 1824 |   for (im=0; im<=l; im++) {
 | 
|---|
| 1825 | #if DEBUG_NUC_PRIM > 1
 | 
|---|
| 1826 |     ExEnv::outn() << "BUILD: M = " << im
 | 
|---|
| 1827 |          << " A = " << 0
 | 
|---|
| 1828 |          << " B = " << 0
 | 
|---|
| 1829 |          << endl;
 | 
|---|
| 1830 | #endif
 | 
|---|
| 1831 |     inter(0,0,im)[0] = fjttable_[im];
 | 
|---|
| 1832 |     }
 | 
|---|
| 1833 | 
 | 
|---|
| 1834 |   for (im=l-1; im>=0; im--) {
 | 
|---|
| 1835 |     int lm = l-im;
 | 
|---|
| 1836 |     // build the integrals for a = 0
 | 
|---|
| 1837 |     for (ib=1; ib<=lm && ib<=b; ib++) {
 | 
|---|
| 1838 | #if DEBUG_NUC_PRIM > 1
 | 
|---|
| 1839 |       ExEnv::outn() << "BUILD: M = " << im
 | 
|---|
| 1840 |            << " A = " << 0
 | 
|---|
| 1841 |            << " B = " << ib
 | 
|---|
| 1842 |            << endl;
 | 
|---|
| 1843 | #endif
 | 
|---|
| 1844 |       comp_prim_block_nuclear_build_b(ib,im);
 | 
|---|
| 1845 |       }
 | 
|---|
| 1846 |     for (ia=1; ia<=lm && ia<=a; ia++) {
 | 
|---|
| 1847 |       for (ib=0; ib<=lm-ia && ib<=b; ib++) {
 | 
|---|
| 1848 | #if DEBUG_NUC_PRIM > 1
 | 
|---|
| 1849 |         ExEnv::outn() << "BUILD: M = " << im
 | 
|---|
| 1850 |              << " A = " << ia
 | 
|---|
| 1851 |              << " B = " << ib
 | 
|---|
| 1852 |              << endl;
 | 
|---|
| 1853 | #endif
 | 
|---|
| 1854 |         comp_prim_block_nuclear_build_a(ia,ib,im);
 | 
|---|
| 1855 |         }
 | 
|---|
| 1856 |       }
 | 
|---|
| 1857 |     }
 | 
|---|
| 1858 | 
 | 
|---|
| 1859 | #if DEBUG_NUC_PRIM
 | 
|---|
| 1860 |   for (im=0; im<=l; im++) {
 | 
|---|
| 1861 |     int lm = l-im;
 | 
|---|
| 1862 |     for (ia=0; ia<=lm && ia<=a; ia++) {
 | 
|---|
| 1863 |       int na = INT_NCART_NN(a);
 | 
|---|
| 1864 |       for (ib=0; ib<=lm-ia && ib<=b; ib++) {
 | 
|---|
| 1865 |         int nb = INT_NCART_NN(b);
 | 
|---|
| 1866 | #if DEBUG_NUC_PRIM > 1
 | 
|---|
| 1867 |         ExEnv::outn() << "M = " << im
 | 
|---|
| 1868 |              << " A = " << ia
 | 
|---|
| 1869 |              << " B = " << ib
 | 
|---|
| 1870 |              << endl;
 | 
|---|
| 1871 | #endif
 | 
|---|
| 1872 |         double *buf = inter(ia,ib,im);
 | 
|---|
| 1873 |         int i1,j1,k1, i2,j2,k2;
 | 
|---|
| 1874 |         FOR_CART(i1,j1,k1,ia) {
 | 
|---|
| 1875 |           FOR_CART(i2,j2,k2,ib) {
 | 
|---|
| 1876 |             double fast = *buf++;
 | 
|---|
| 1877 |             double slow = comp_prim_nuclear(i1, j1, k1,
 | 
|---|
| 1878 |                                             i2, j2, k2, im);
 | 
|---|
| 1879 |             if (fast > 999.0) fast = 999.0;
 | 
|---|
| 1880 |             if (fast < -999.0) fast = -999.0;
 | 
|---|
| 1881 |             if (fabs(fast-slow)>1.0e-12) {
 | 
|---|
| 1882 |               ExEnv::outn() << scprintf("(%d %d %d) (%d %d %d) (%d): ",
 | 
|---|
| 1883 |                                i1,j1,k1, i2,j2,k2, im)
 | 
|---|
| 1884 |                    << scprintf(" % 20.15f % 20.15f",
 | 
|---|
| 1885 |                                fast, slow)
 | 
|---|
| 1886 |                    << endl;
 | 
|---|
| 1887 |               }
 | 
|---|
| 1888 |             } END_FOR_CART;
 | 
|---|
| 1889 |           } END_FOR_CART;
 | 
|---|
| 1890 |         }
 | 
|---|
| 1891 |       }
 | 
|---|
| 1892 |     }
 | 
|---|
| 1893 | #endif
 | 
|---|
| 1894 | }
 | 
|---|
| 1895 | 
 | 
|---|
| 1896 | void
 | 
|---|
| 1897 | Int1eV3::comp_prim_block_nuclear_build_a(int a, int b, int m)
 | 
|---|
| 1898 | {
 | 
|---|
| 1899 |   double *I000 = inter(a,b,m);
 | 
|---|
| 1900 |   double *I100 = inter(a-1,b,m);
 | 
|---|
| 1901 |   double *I101 = inter(a-1,b,m+1);
 | 
|---|
| 1902 |   double *I200 = (a>1?inter(a-2,b,m):0);
 | 
|---|
| 1903 |   double *I201 = (a>1?inter(a-2,b,m+1):0);
 | 
|---|
| 1904 |   double *I110 = (b?inter(a-1,b-1,m):0);
 | 
|---|
| 1905 |   double *I111 = (b?inter(a-1,b-1,m+1):0);
 | 
|---|
| 1906 |   int i1,j1,k1;
 | 
|---|
| 1907 |   int i2,j2,k2;
 | 
|---|
| 1908 |   int carta=0;
 | 
|---|
| 1909 |   int sizeb = INT_NCART_NN(b);
 | 
|---|
| 1910 |   int sizebm1 = INT_NCART_DEC(b,sizeb);
 | 
|---|
| 1911 |   FOR_CART(i1,j1,k1,a) {
 | 
|---|
| 1912 |     int cartb=0;
 | 
|---|
| 1913 |     FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 1914 |       double result = 0.0;
 | 
|---|
| 1915 |       if (i1) {
 | 
|---|
| 1916 |         int am1 = INT_CARTINDEX(a-1,i1-1,j1);
 | 
|---|
| 1917 |         result  = PmA[0] * I100[am1*sizeb+cartb];
 | 
|---|
| 1918 |         result -= PmC[0] * I101[am1*sizeb+cartb];
 | 
|---|
| 1919 |         if (i1>1) {
 | 
|---|
| 1920 |           int am2 = INT_CARTINDEX(a-2,i1-2,j1);
 | 
|---|
| 1921 |           result += oo2zeta * (i1-1)
 | 
|---|
| 1922 |                     *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
 | 
|---|
| 1923 |           }
 | 
|---|
| 1924 |         if (i2) {
 | 
|---|
| 1925 |           int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
 | 
|---|
| 1926 |           result += oo2zeta * i2
 | 
|---|
| 1927 |                     *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
 | 
|---|
| 1928 |           }
 | 
|---|
| 1929 |         }
 | 
|---|
| 1930 |       else if (j1) {
 | 
|---|
| 1931 |         int am1 = INT_CARTINDEX(a-1,i1,j1-1);
 | 
|---|
| 1932 |         result  = PmA[1] * I100[am1*sizeb+cartb];
 | 
|---|
| 1933 |         result -= PmC[1] * I101[am1*sizeb+cartb];
 | 
|---|
| 1934 |         if (j1>1) {
 | 
|---|
| 1935 |           int am2 = INT_CARTINDEX(a-2,i1,j1-2);
 | 
|---|
| 1936 |           result += oo2zeta * (j1-1)
 | 
|---|
| 1937 |                     *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
 | 
|---|
| 1938 |           }
 | 
|---|
| 1939 |         if (j2) {
 | 
|---|
| 1940 |           int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
 | 
|---|
| 1941 |           result += oo2zeta * j2
 | 
|---|
| 1942 |                     *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
 | 
|---|
| 1943 |           }
 | 
|---|
| 1944 |         }
 | 
|---|
| 1945 |       else if (k1) {
 | 
|---|
| 1946 |         int am1 = INT_CARTINDEX(a-1,i1,j1);
 | 
|---|
| 1947 |         result  = PmA[2] * I100[am1*sizeb+cartb];
 | 
|---|
| 1948 |         result -= PmC[2] * I101[am1*sizeb+cartb];
 | 
|---|
| 1949 |         if (k1>1) {
 | 
|---|
| 1950 |           int am2 = INT_CARTINDEX(a-2,i1,j1);
 | 
|---|
| 1951 |           result += oo2zeta * (k1-1)
 | 
|---|
| 1952 |                     *(I200[am2*sizeb+cartb] - I201[am2*sizeb+cartb]);
 | 
|---|
| 1953 |           }
 | 
|---|
| 1954 |         if (k2) {
 | 
|---|
| 1955 |           int bm1 = INT_CARTINDEX(b-1,i2,j2);
 | 
|---|
| 1956 |           result += oo2zeta * k2
 | 
|---|
| 1957 |                     *(I110[am1*sizebm1+bm1] - I111[am1*sizebm1+bm1]);
 | 
|---|
| 1958 |           }
 | 
|---|
| 1959 |         }
 | 
|---|
| 1960 |       I000[carta*sizeb+cartb] = result;
 | 
|---|
| 1961 |       cartb++;
 | 
|---|
| 1962 |       } END_FOR_CART;
 | 
|---|
| 1963 |     carta++;
 | 
|---|
| 1964 |     } END_FOR_CART;
 | 
|---|
| 1965 | }
 | 
|---|
| 1966 | 
 | 
|---|
| 1967 | void
 | 
|---|
| 1968 | Int1eV3::comp_prim_block_nuclear_build_b(int b, int m)
 | 
|---|
| 1969 | {
 | 
|---|
| 1970 |   double *I000 = inter(0,b,m);
 | 
|---|
| 1971 |   double *I010 = inter(0,b-1,m);
 | 
|---|
| 1972 |   double *I011 = inter(0,b-1,m+1);
 | 
|---|
| 1973 |   double *I020 = (b>1?inter(0,b-2,m):0);
 | 
|---|
| 1974 |   double *I021 = (b>1?inter(0,b-2,m+1):0);
 | 
|---|
| 1975 |   int i2,j2,k2;
 | 
|---|
| 1976 |   int cartb=0;
 | 
|---|
| 1977 |   FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 1978 |     double result = 0.0;
 | 
|---|
| 1979 | 
 | 
|---|
| 1980 |     if (i2) {
 | 
|---|
| 1981 |       int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
 | 
|---|
| 1982 |       result  = PmB[0] * I010[bm1];
 | 
|---|
| 1983 |       result -= PmC[0] * I011[bm1];
 | 
|---|
| 1984 |       if (i2>1) {
 | 
|---|
| 1985 |         int bm2 = INT_CARTINDEX(b-2,i2-2,j2);
 | 
|---|
| 1986 |         result += oo2zeta * (i2-1) * (I020[bm2] - I021[bm2]);
 | 
|---|
| 1987 |         }
 | 
|---|
| 1988 |       }
 | 
|---|
| 1989 |     else if (j2) {
 | 
|---|
| 1990 |       int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
 | 
|---|
| 1991 |       result  = PmB[1] * I010[bm1];
 | 
|---|
| 1992 |       result -= PmC[1] * I011[bm1];
 | 
|---|
| 1993 |       if (j2>1) {
 | 
|---|
| 1994 |         int bm2 = INT_CARTINDEX(b-2,i2,j2-2);
 | 
|---|
| 1995 |         result += oo2zeta * (j2-1) * (I020[bm2] - I021[bm2]);
 | 
|---|
| 1996 |         }
 | 
|---|
| 1997 |       }
 | 
|---|
| 1998 |     else if (k2) {
 | 
|---|
| 1999 |       int bm1 = INT_CARTINDEX(b-1,i2,j2);
 | 
|---|
| 2000 |       result  = PmB[2] * I010[bm1];
 | 
|---|
| 2001 |       result -= PmC[2] * I011[bm1];
 | 
|---|
| 2002 |       if (k2>1) {
 | 
|---|
| 2003 |         int bm2 = INT_CARTINDEX(b-2,i2,j2);
 | 
|---|
| 2004 |         result += oo2zeta * (k2-1) * (I020[bm2] - I021[bm2]);
 | 
|---|
| 2005 |         }
 | 
|---|
| 2006 |       }
 | 
|---|
| 2007 | 
 | 
|---|
| 2008 |     I000[cartb] = result;
 | 
|---|
| 2009 |     cartb++;
 | 
|---|
| 2010 |     } END_FOR_CART;
 | 
|---|
| 2011 | }
 | 
|---|
| 2012 | 
 | 
|---|
| 2013 | double
 | 
|---|
| 2014 | Int1eV3::comp_prim_nuclear(int i1, int j1, int k1,
 | 
|---|
| 2015 |                            int i2, int j2, int k2, int m)
 | 
|---|
| 2016 | {
 | 
|---|
| 2017 |   double result;
 | 
|---|
| 2018 | 
 | 
|---|
| 2019 |   if (i1) {
 | 
|---|
| 2020 |     result  = PmA[0] * comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m);
 | 
|---|
| 2021 |     result -= PmC[0] * comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m+1);
 | 
|---|
| 2022 |     if (i1>1) result += oo2zeta * (i1-1)
 | 
|---|
| 2023 |                        * (  comp_prim_nuclear(i1-2,j1,k1,i2,j2,k2,m)
 | 
|---|
| 2024 |                           - comp_prim_nuclear(i1-2,j1,k1,i2,j2,k2,m+1));
 | 
|---|
| 2025 |     if (i2) result += oo2zeta * i2
 | 
|---|
| 2026 |                      * (  comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m)
 | 
|---|
| 2027 |                         - comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m+1));
 | 
|---|
| 2028 |     }
 | 
|---|
| 2029 |   else if (j1) {
 | 
|---|
| 2030 |     result  = PmA[1] * comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m);
 | 
|---|
| 2031 |     result -= PmC[1] * comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m+1);
 | 
|---|
| 2032 |     if (j1>1) result += oo2zeta * (j1-1)
 | 
|---|
| 2033 |                        * (  comp_prim_nuclear(i1,j1-2,k1,i2,j2,k2,m)
 | 
|---|
| 2034 |                           - comp_prim_nuclear(i1,j1-2,k1,i2,j2,k2,m+1));
 | 
|---|
| 2035 |     if (j2) result += oo2zeta * j2
 | 
|---|
| 2036 |                      * (  comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m)
 | 
|---|
| 2037 |                         - comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m+1));
 | 
|---|
| 2038 |     }
 | 
|---|
| 2039 |   else if (k1) {
 | 
|---|
| 2040 |     result  = PmA[2] * comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m);
 | 
|---|
| 2041 |     result -= PmC[2] * comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m+1);
 | 
|---|
| 2042 |     if (k1>1) result += oo2zeta * (k1-1)
 | 
|---|
| 2043 |                        * (  comp_prim_nuclear(i1,j1,k1-2,i2,j2,k2,m)
 | 
|---|
| 2044 |                           - comp_prim_nuclear(i1,j1,k1-2,i2,j2,k2,m+1));
 | 
|---|
| 2045 |     if (k2) result += oo2zeta * k2
 | 
|---|
| 2046 |                      * (  comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m)
 | 
|---|
| 2047 |                         - comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m+1));
 | 
|---|
| 2048 |     }
 | 
|---|
| 2049 |   else if (i2) {
 | 
|---|
| 2050 |     result  = PmB[0] * comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m);
 | 
|---|
| 2051 |     result -= PmC[0] * comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m+1);
 | 
|---|
| 2052 |     if (i2>1) result += oo2zeta * (i2-1)
 | 
|---|
| 2053 |                        * (  comp_prim_nuclear(i1,j1,k1,i2-2,j2,k2,m)
 | 
|---|
| 2054 |                           - comp_prim_nuclear(i1,j1,k1,i2-2,j2,k2,m+1));
 | 
|---|
| 2055 |     if (i1) result += oo2zeta * i1
 | 
|---|
| 2056 |                      * (  comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m)
 | 
|---|
| 2057 |                         - comp_prim_nuclear(i1-1,j1,k1,i2-1,j2,k2,m+1));
 | 
|---|
| 2058 |     }
 | 
|---|
| 2059 |   else if (j2) {
 | 
|---|
| 2060 |     result  = PmB[1] * comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m);
 | 
|---|
| 2061 |     result -= PmC[1] * comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m+1);
 | 
|---|
| 2062 |     if (j2>1) result += oo2zeta * (j2-1)
 | 
|---|
| 2063 |                        * (  comp_prim_nuclear(i1,j1,k1,i2,j2-2,k2,m)
 | 
|---|
| 2064 |                           - comp_prim_nuclear(i1,j1,k1,i2,j2-2,k2,m+1));
 | 
|---|
| 2065 |     if (j1) result += oo2zeta * j1
 | 
|---|
| 2066 |                      * (  comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m)
 | 
|---|
| 2067 |                         - comp_prim_nuclear(i1,j1-1,k1,i2,j2-1,k2,m+1));
 | 
|---|
| 2068 |     }
 | 
|---|
| 2069 |   else if (k2) {
 | 
|---|
| 2070 |     result  = PmB[2] * comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m);
 | 
|---|
| 2071 |     result -= PmC[2] * comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m+1);
 | 
|---|
| 2072 |     if (k2>1) result += oo2zeta * (k2-1)
 | 
|---|
| 2073 |                        * (  comp_prim_nuclear(i1,j1,k1,i2,j2,k2-2,m)
 | 
|---|
| 2074 |                           - comp_prim_nuclear(i1,j1,k1,i2,j2,k2-2,m+1));
 | 
|---|
| 2075 |     if (k1) result += oo2zeta * k1
 | 
|---|
| 2076 |                      * (  comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m)
 | 
|---|
| 2077 |                         - comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2-1,m+1));
 | 
|---|
| 2078 |     }
 | 
|---|
| 2079 |   else result = fjttable_[m];
 | 
|---|
| 2080 | 
 | 
|---|
| 2081 |   return result;
 | 
|---|
| 2082 |   }
 | 
|---|
| 2083 | 
 | 
|---|
| 2084 | /* Compute the electric field integral for the shell.  The arguments are the
 | 
|---|
| 2085 |  * the electric field vector, the
 | 
|---|
| 2086 |  * cartesian exponents for centers 1 and 2.  The shell1 and shell2
 | 
|---|
| 2087 |  * globals are used. */
 | 
|---|
| 2088 | void
 | 
|---|
| 2089 | Int1eV3::comp_shell_efield(double *efield,
 | 
|---|
| 2090 |                            int gc1, int i1, int j1, int k1,
 | 
|---|
| 2091 |                            int gc2, int i2, int j2, int k2)
 | 
|---|
| 2092 | {
 | 
|---|
| 2093 |   int i,j,k,xyz;
 | 
|---|
| 2094 |   double result[3];
 | 
|---|
| 2095 |   double Pi;
 | 
|---|
| 2096 |   double oozeta;
 | 
|---|
| 2097 |   double AmB,AmB2;
 | 
|---|
| 2098 |   double PmC2;
 | 
|---|
| 2099 |   double auxcoef;
 | 
|---|
| 2100 |   int am;
 | 
|---|
| 2101 | 
 | 
|---|
| 2102 |   am = i1+j1+k1+i2+j2+k2;
 | 
|---|
| 2103 | 
 | 
|---|
| 2104 |   /* Loop over the primitives in the shells. */
 | 
|---|
| 2105 |   for (xyz=0; xyz<3; xyz++) result[xyz] = 0.0;
 | 
|---|
| 2106 |   for (i=0; i<gshell1->nprimitive(); i++) {
 | 
|---|
| 2107 |     for (j=0; j<gshell2->nprimitive(); j++) {
 | 
|---|
| 2108 | 
 | 
|---|
| 2109 |       /* Compute the intermediates. */
 | 
|---|
| 2110 |       zeta = gshell1->exponent(i) + gshell2->exponent(j);
 | 
|---|
| 2111 |       oozeta = 1.0/zeta;
 | 
|---|
| 2112 |       oo2zeta = 0.5*oozeta;
 | 
|---|
| 2113 |       AmB2 = 0.0;
 | 
|---|
| 2114 |       PmC2 = 0.0;
 | 
|---|
| 2115 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2116 |         Pi = oozeta*(gshell1->exponent(i) * A[xyz] + gshell2->exponent(j) * B[xyz]);
 | 
|---|
| 2117 |         PmA[xyz] = Pi - A[xyz];
 | 
|---|
| 2118 |         PmB[xyz] = Pi - B[xyz];
 | 
|---|
| 2119 |         PmC[xyz] = Pi - C[xyz];
 | 
|---|
| 2120 |         AmB = A[xyz] - B[xyz];
 | 
|---|
| 2121 |         AmB2 += AmB*AmB;
 | 
|---|
| 2122 |         PmC2 += PmC[xyz]*PmC[xyz];
 | 
|---|
| 2123 |         }
 | 
|---|
| 2124 | 
 | 
|---|
| 2125 |       /* The auxillary integral coeficients. */
 | 
|---|
| 2126 |       auxcoef =   2.0 * M_PI/(gshell1->exponent(i)
 | 
|---|
| 2127 |                                            +gshell2->exponent(j))
 | 
|---|
| 2128 |            * exp(- oozeta * gshell1->exponent(i)
 | 
|---|
| 2129 |                  * gshell2->exponent(j) * AmB2);
 | 
|---|
| 2130 | 
 | 
|---|
| 2131 |       /* The Fm(U) intermediates. */
 | 
|---|
| 2132 |       fjttable_ = fjt_->values(am+1,zeta*PmC2);
 | 
|---|
| 2133 | 
 | 
|---|
| 2134 |       /* Convert the Fm(U) intermediates into the auxillary
 | 
|---|
| 2135 |        * nuclear attraction integrals. */
 | 
|---|
| 2136 |       for (k=0; k<=am+1; k++) {
 | 
|---|
| 2137 |         fjttable_[k] *= auxcoef;
 | 
|---|
| 2138 |         }
 | 
|---|
| 2139 | 
 | 
|---|
| 2140 |       /* Compute the nuclear attraction integral. */
 | 
|---|
| 2141 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2142 |         result[xyz] +=  gshell1->coefficient_unnorm(gc1,i)
 | 
|---|
| 2143 |                       * gshell2->coefficient_unnorm(gc2,j)
 | 
|---|
| 2144 |                       * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2,0);
 | 
|---|
| 2145 |         }
 | 
|---|
| 2146 |       }
 | 
|---|
| 2147 |     }
 | 
|---|
| 2148 | 
 | 
|---|
| 2149 |   for (xyz=0; xyz<3; xyz++) efield[xyz] = result[xyz];
 | 
|---|
| 2150 | 
 | 
|---|
| 2151 |   }
 | 
|---|
| 2152 | 
 | 
|---|
| 2153 | /* Compute the electric field integral for the shell.  The arguments are the
 | 
|---|
| 2154 |  * the electric field vector, the
 | 
|---|
| 2155 |  * cartesian exponents for centers 1 and 2.  The shell1 and shell2
 | 
|---|
| 2156 |  * globals are used. */
 | 
|---|
| 2157 | void
 | 
|---|
| 2158 | Int1eV3::comp_shell_block_efield(int gc1, int a, int gc2, int b,
 | 
|---|
| 2159 |                                  int gcsize2, int gcoff1, int gcoff2,
 | 
|---|
| 2160 |                                  double coef, double *buffer)
 | 
|---|
| 2161 | {
 | 
|---|
| 2162 |   int i,j,k,xyz;
 | 
|---|
| 2163 |   double Pi;
 | 
|---|
| 2164 |   double oozeta;
 | 
|---|
| 2165 |   double AmB,AmB2;
 | 
|---|
| 2166 |   double PmC2;
 | 
|---|
| 2167 |   double auxcoef;
 | 
|---|
| 2168 |   int am = a + b;
 | 
|---|
| 2169 |   int size1 = INT_NCART_NN(a);
 | 
|---|
| 2170 |   int size2 = INT_NCART_NN(b);
 | 
|---|
| 2171 | 
 | 
|---|
| 2172 |   /* Loop over the primitives in the shells. */
 | 
|---|
| 2173 |   for (i=0; i<gshell1->nprimitive(); i++) {
 | 
|---|
| 2174 |     for (j=0; j<gshell2->nprimitive(); j++) {
 | 
|---|
| 2175 | 
 | 
|---|
| 2176 |       /* Compute the intermediates. */
 | 
|---|
| 2177 |       zeta = gshell1->exponent(i) + gshell2->exponent(j);
 | 
|---|
| 2178 |       oozeta = 1.0/zeta;
 | 
|---|
| 2179 |       oo2zeta = 0.5*oozeta;
 | 
|---|
| 2180 |       AmB2 = 0.0;
 | 
|---|
| 2181 |       PmC2 = 0.0;
 | 
|---|
| 2182 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2183 |         Pi = oozeta*(gshell1->exponent(i) * A[xyz]
 | 
|---|
| 2184 |                      + gshell2->exponent(j) * B[xyz]);
 | 
|---|
| 2185 |         PmA[xyz] = Pi - A[xyz];
 | 
|---|
| 2186 |         PmB[xyz] = Pi - B[xyz];
 | 
|---|
| 2187 |         PmC[xyz] = Pi - C[xyz];
 | 
|---|
| 2188 |         AmB = A[xyz] - B[xyz];
 | 
|---|
| 2189 |         AmB2 += AmB*AmB;
 | 
|---|
| 2190 |         PmC2 += PmC[xyz]*PmC[xyz];
 | 
|---|
| 2191 |         }
 | 
|---|
| 2192 | 
 | 
|---|
| 2193 |       /* The auxillary integral coeficients. */
 | 
|---|
| 2194 |       auxcoef =   2.0 * M_PI/(gshell1->exponent(i)
 | 
|---|
| 2195 |                                            +gshell2->exponent(j))
 | 
|---|
| 2196 |            * exp(- oozeta * gshell1->exponent(i)
 | 
|---|
| 2197 |                  * gshell2->exponent(j) * AmB2);
 | 
|---|
| 2198 | 
 | 
|---|
| 2199 |       /* The Fm(U) intermediates. */
 | 
|---|
| 2200 |       fjttable_ = fjt_->values(am+1,zeta*PmC2);
 | 
|---|
| 2201 | 
 | 
|---|
| 2202 |       /* Convert the Fm(U) intermediates into the auxillary
 | 
|---|
| 2203 |        * nuclear attraction integrals. */
 | 
|---|
| 2204 |       for (k=0; k<=am+1; k++) {
 | 
|---|
| 2205 |         fjttable_[k] *= auxcoef;
 | 
|---|
| 2206 |         }
 | 
|---|
| 2207 | 
 | 
|---|
| 2208 |       double tmp = gshell1->coefficient_unnorm(gc1,i)
 | 
|---|
| 2209 |                    * gshell2->coefficient_unnorm(gc2,j)
 | 
|---|
| 2210 |                    * coef;
 | 
|---|
| 2211 | 
 | 
|---|
| 2212 |       /* Compute the nuclear attraction integral. */
 | 
|---|
| 2213 |       comp_prim_block_efield(a,b);
 | 
|---|
| 2214 | 
 | 
|---|
| 2215 |       double *primbuffer = efield_inter(a,b,0);
 | 
|---|
| 2216 |       for (int ip=0; ip<size1; ip++) {
 | 
|---|
| 2217 |         for (int jp=0; jp<size2; jp++) {
 | 
|---|
| 2218 |           for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2219 |             buffer[((ip+gcoff1)*gcsize2+jp+gcoff2)*3+xyz]
 | 
|---|
| 2220 |               += tmp * *primbuffer++;
 | 
|---|
| 2221 |             }
 | 
|---|
| 2222 |           }
 | 
|---|
| 2223 |         }
 | 
|---|
| 2224 |       }
 | 
|---|
| 2225 |     }
 | 
|---|
| 2226 | 
 | 
|---|
| 2227 |   }
 | 
|---|
| 2228 | 
 | 
|---|
| 2229 | void
 | 
|---|
| 2230 | Int1eV3::comp_prim_block_efield(int a, int b)
 | 
|---|
| 2231 | {
 | 
|---|
| 2232 |   int  xyz;
 | 
|---|
| 2233 |   int im, ia, ib;
 | 
|---|
| 2234 |   int l = a + b;
 | 
|---|
| 2235 | 
 | 
|---|
| 2236 |   // Fill in the nuclear integrals which are needed as intermediates.
 | 
|---|
| 2237 |   // m=0 is not needed.
 | 
|---|
| 2238 | 
 | 
|---|
| 2239 |   // fill in the ia+ib=0 integrals, skipping m=0
 | 
|---|
| 2240 |   for (im=1; im<=l; im++) {
 | 
|---|
| 2241 | #if DEBUG_EFIELD_PRIM > 1
 | 
|---|
| 2242 |     ExEnv::outn() << "BUILD NUC: M = " << im
 | 
|---|
| 2243 |          << " A = " << 0
 | 
|---|
| 2244 |          << " B = " << 0
 | 
|---|
| 2245 |          << endl;
 | 
|---|
| 2246 | #endif
 | 
|---|
| 2247 |     inter(0,0,im)[0] = fjttable_[im];
 | 
|---|
| 2248 |     }
 | 
|---|
| 2249 | 
 | 
|---|
| 2250 |   // skipping m=0
 | 
|---|
| 2251 |   for (im=l-1; im>0; im--) {
 | 
|---|
| 2252 |     int lm = l-im;
 | 
|---|
| 2253 |     // build the integrals for a = 0
 | 
|---|
| 2254 |     for (ib=1; ib<=lm && ib<=b; ib++) {
 | 
|---|
| 2255 | #if DEBUG_EFIELD_PRIM > 1
 | 
|---|
| 2256 |       ExEnv::outn() << "BUILD NUC: M = " << im
 | 
|---|
| 2257 |            << " A = " << 0
 | 
|---|
| 2258 |            << " B = " << ib
 | 
|---|
| 2259 |            << endl;
 | 
|---|
| 2260 | #endif
 | 
|---|
| 2261 |       comp_prim_block_nuclear_build_b(ib,im);
 | 
|---|
| 2262 |       }
 | 
|---|
| 2263 |     for (ia=1; ia<=lm && ia<=a; ia++) {
 | 
|---|
| 2264 |       for (ib=0; ib<=lm-ia && ib<=b; ib++) {
 | 
|---|
| 2265 | #if DEBUG_EFIELD_PRIM > 1
 | 
|---|
| 2266 |         ExEnv::outn() << "BUILD NUC: M = " << im
 | 
|---|
| 2267 |              << " A = " << ia
 | 
|---|
| 2268 |              << " B = " << ib
 | 
|---|
| 2269 |              << endl;
 | 
|---|
| 2270 | #endif
 | 
|---|
| 2271 |         comp_prim_block_nuclear_build_a(ia,ib,im);
 | 
|---|
| 2272 |         }
 | 
|---|
| 2273 |       }
 | 
|---|
| 2274 |     }
 | 
|---|
| 2275 | 
 | 
|---|
| 2276 |   // now complete the efield integrals
 | 
|---|
| 2277 | 
 | 
|---|
| 2278 |   // fill in the ia+ib=0 integrals
 | 
|---|
| 2279 |   for (im=0; im<=l; im++) {
 | 
|---|
| 2280 | #if DEBUG_EFIELD_PRIM > 1
 | 
|---|
| 2281 |     ExEnv::outn() << "BUILD EFIELD: M = " << im
 | 
|---|
| 2282 |          << " A = " << 0
 | 
|---|
| 2283 |          << " B = " << 0
 | 
|---|
| 2284 |          << endl;
 | 
|---|
| 2285 | #endif
 | 
|---|
| 2286 |     double *tmp = efield_inter(0,0,im);
 | 
|---|
| 2287 |     for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2288 |       *tmp++ = 2.0 * zeta * PmC[xyz] * fjttable_[im+1];
 | 
|---|
| 2289 |       }
 | 
|---|
| 2290 |     }
 | 
|---|
| 2291 | 
 | 
|---|
| 2292 |   for (im=l-1; im>=0; im--) {
 | 
|---|
| 2293 |     int lm = l-im;
 | 
|---|
| 2294 |     // build the integrals for a = 0
 | 
|---|
| 2295 |     for (ib=1; ib<=lm && ib<=b; ib++) {
 | 
|---|
| 2296 | #if DEBUG_EFIELD_PRIM > 1
 | 
|---|
| 2297 |       ExEnv::outn() << "BUILD EFIELD: M = " << im
 | 
|---|
| 2298 |            << " A = " << 0
 | 
|---|
| 2299 |            << " B = " << ib
 | 
|---|
| 2300 |            << endl;
 | 
|---|
| 2301 | #endif
 | 
|---|
| 2302 |       comp_prim_block_efield_build_b(ib,im);
 | 
|---|
| 2303 |       }
 | 
|---|
| 2304 |     for (ia=1; ia<=lm && ia<=a; ia++) {
 | 
|---|
| 2305 |       for (ib=0; ib<=lm-ia && ib<=b; ib++) {
 | 
|---|
| 2306 | #if DEBUG_EFIELD_PRIM > 1
 | 
|---|
| 2307 |         ExEnv::outn() << "BUILD EFIELD: M = " << im
 | 
|---|
| 2308 |              << " A = " << ia
 | 
|---|
| 2309 |              << " B = " << ib
 | 
|---|
| 2310 |              << endl;
 | 
|---|
| 2311 | #endif
 | 
|---|
| 2312 |         comp_prim_block_efield_build_a(ia,ib,im);
 | 
|---|
| 2313 |         }
 | 
|---|
| 2314 |       }
 | 
|---|
| 2315 |     }
 | 
|---|
| 2316 | 
 | 
|---|
| 2317 | #if DEBUG_EFIELD_PRIM
 | 
|---|
| 2318 |   for (im=0; im<=l; im++) {
 | 
|---|
| 2319 |     int lm = l-im;
 | 
|---|
| 2320 |     for (ia=0; ia<=lm && ia<=a; ia++) {
 | 
|---|
| 2321 |       int na = INT_NCART_NN(a);
 | 
|---|
| 2322 |       for (ib=0; ib<=lm-ia && ib<=b; ib++) {
 | 
|---|
| 2323 |         int nb = INT_NCART_NN(b);
 | 
|---|
| 2324 | #if DEBUG_EFIELD_PRIM > 1
 | 
|---|
| 2325 |         ExEnv::outn() << "M = " << im
 | 
|---|
| 2326 |              << " A = " << ia
 | 
|---|
| 2327 |              << " B = " << ib
 | 
|---|
| 2328 |              << endl;
 | 
|---|
| 2329 | #endif
 | 
|---|
| 2330 |         double *buf = efield_inter(ia,ib,im);
 | 
|---|
| 2331 |         int i1,j1,k1, i2,j2,k2;
 | 
|---|
| 2332 |         FOR_CART(i1,j1,k1,ia) {
 | 
|---|
| 2333 |           FOR_CART(i2,j2,k2,ib) {
 | 
|---|
| 2334 |             for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2335 |               double fast = *buf++;
 | 
|---|
| 2336 |               double slow = comp_prim_efield(xyz, i1, j1, k1,
 | 
|---|
| 2337 |                                              i2, j2, k2, im);
 | 
|---|
| 2338 |               if (fast > 999.0) fast = 999.0;
 | 
|---|
| 2339 |               if (fast < -999.0) fast = -999.0;
 | 
|---|
| 2340 |               if (fabs(fast-slow)>1.0e-12) {
 | 
|---|
| 2341 |                 ExEnv::outn() << scprintf("(%d %d %d) (%d %d %d) (%d): ",
 | 
|---|
| 2342 |                                  i1,j1,k1, i2,j2,k2, im)
 | 
|---|
| 2343 |                      << scprintf(" % 20.15f % 20.15f",
 | 
|---|
| 2344 |                                  fast, slow)
 | 
|---|
| 2345 |                      << endl;
 | 
|---|
| 2346 |                 }
 | 
|---|
| 2347 |               }
 | 
|---|
| 2348 |             } END_FOR_CART;
 | 
|---|
| 2349 |           } END_FOR_CART;
 | 
|---|
| 2350 |         }
 | 
|---|
| 2351 |       }
 | 
|---|
| 2352 |     }
 | 
|---|
| 2353 | #endif
 | 
|---|
| 2354 | }
 | 
|---|
| 2355 | 
 | 
|---|
| 2356 | void
 | 
|---|
| 2357 | Int1eV3::comp_prim_block_efield_build_a(int a, int b, int m)
 | 
|---|
| 2358 | {
 | 
|---|
| 2359 |   double *I000 = efield_inter(a,b,m);
 | 
|---|
| 2360 |   double *I100 = efield_inter(a-1,b,m);
 | 
|---|
| 2361 |   double *I101 = efield_inter(a-1,b,m+1);
 | 
|---|
| 2362 |   double *I200 = (a>1?efield_inter(a-2,b,m):0);
 | 
|---|
| 2363 |   double *I201 = (a>1?efield_inter(a-2,b,m+1):0);
 | 
|---|
| 2364 |   double *I110 = (b?efield_inter(a-1,b-1,m):0);
 | 
|---|
| 2365 |   double *I111 = (b?efield_inter(a-1,b-1,m+1):0);
 | 
|---|
| 2366 |   double *nucI101 = inter(a-1,b,m+1);
 | 
|---|
| 2367 |   int i1,j1,k1;
 | 
|---|
| 2368 |   int i2,j2,k2;
 | 
|---|
| 2369 |   int xyz;
 | 
|---|
| 2370 |   int carta=0;
 | 
|---|
| 2371 |   int sizeb = INT_NCART_NN(b);
 | 
|---|
| 2372 |   int sizebm1 = INT_NCART_DEC(b,sizeb);
 | 
|---|
| 2373 |   FOR_CART(i1,j1,k1,a) {
 | 
|---|
| 2374 |     int cartb=0;
 | 
|---|
| 2375 |     FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 2376 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2377 |         double result = 0.0;
 | 
|---|
| 2378 |         if (i1) {
 | 
|---|
| 2379 |           int am1 = INT_CARTINDEX(a-1,i1-1,j1);
 | 
|---|
| 2380 |           result  = PmA[0] * I100[(am1*sizeb+cartb)*3+xyz];
 | 
|---|
| 2381 |           result -= PmC[0] * I101[(am1*sizeb+cartb)*3+xyz];
 | 
|---|
| 2382 |           if (i1>1) {
 | 
|---|
| 2383 |             int am2 = INT_CARTINDEX(a-2,i1-2,j1);
 | 
|---|
| 2384 |             result += oo2zeta * (i1-1)
 | 
|---|
| 2385 |                       *(I200[(am2*sizeb+cartb)*3+xyz]
 | 
|---|
| 2386 |                         - I201[(am2*sizeb+cartb)*3+xyz]);
 | 
|---|
| 2387 |             }
 | 
|---|
| 2388 |           if (i2) {
 | 
|---|
| 2389 |             int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
 | 
|---|
| 2390 |             result += oo2zeta * i2
 | 
|---|
| 2391 |                       *(I110[(am1*sizebm1+bm1)*3+xyz]
 | 
|---|
| 2392 |                         - I111[(am1*sizebm1+bm1)*3+xyz]);
 | 
|---|
| 2393 |             }
 | 
|---|
| 2394 |           if (xyz==0) result += nucI101[am1*sizeb+cartb];
 | 
|---|
| 2395 |           }
 | 
|---|
| 2396 |         else if (j1) {
 | 
|---|
| 2397 |           int am1 = INT_CARTINDEX(a-1,i1,j1-1);
 | 
|---|
| 2398 |           result  = PmA[1] * I100[(am1*sizeb+cartb)*3+xyz];
 | 
|---|
| 2399 |           result -= PmC[1] * I101[(am1*sizeb+cartb)*3+xyz];
 | 
|---|
| 2400 |           if (j1>1) {
 | 
|---|
| 2401 |             int am2 = INT_CARTINDEX(a-2,i1,j1-2);
 | 
|---|
| 2402 |             result += oo2zeta * (j1-1)
 | 
|---|
| 2403 |                       *(I200[(am2*sizeb+cartb)*3+xyz]
 | 
|---|
| 2404 |                         - I201[(am2*sizeb+cartb)*3+xyz]);
 | 
|---|
| 2405 |             }
 | 
|---|
| 2406 |           if (j2) {
 | 
|---|
| 2407 |             int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
 | 
|---|
| 2408 |             result += oo2zeta * j2
 | 
|---|
| 2409 |                       *(I110[(am1*sizebm1+bm1)*3+xyz]
 | 
|---|
| 2410 |                         - I111[(am1*sizebm1+bm1)*3+xyz]);
 | 
|---|
| 2411 |             }
 | 
|---|
| 2412 |           if (xyz==1) result += nucI101[am1*sizeb+cartb];
 | 
|---|
| 2413 |           }
 | 
|---|
| 2414 |         else if (k1) {
 | 
|---|
| 2415 |           int am1 = INT_CARTINDEX(a-1,i1,j1);
 | 
|---|
| 2416 |           result  = PmA[2] * I100[(am1*sizeb+cartb)*3+xyz];
 | 
|---|
| 2417 |           result -= PmC[2] * I101[(am1*sizeb+cartb)*3+xyz];
 | 
|---|
| 2418 |           if (k1>1) {
 | 
|---|
| 2419 |             int am2 = INT_CARTINDEX(a-2,i1,j1);
 | 
|---|
| 2420 |             result += oo2zeta * (k1-1)
 | 
|---|
| 2421 |                       *(I200[(am2*sizeb+cartb)*3+xyz]
 | 
|---|
| 2422 |                         - I201[(am2*sizeb+cartb)*3+xyz]);
 | 
|---|
| 2423 |             }
 | 
|---|
| 2424 |           if (k2) {
 | 
|---|
| 2425 |             int bm1 = INT_CARTINDEX(b-1,i2,j2);
 | 
|---|
| 2426 |             result += oo2zeta * k2
 | 
|---|
| 2427 |                       *(I110[(am1*sizebm1+bm1)*3+xyz]
 | 
|---|
| 2428 |                         - I111[(am1*sizebm1+bm1)*3+xyz]);
 | 
|---|
| 2429 |             }
 | 
|---|
| 2430 |           if (xyz==2) result += nucI101[am1*sizeb+cartb];
 | 
|---|
| 2431 |           }
 | 
|---|
| 2432 |         I000[(carta*sizeb+cartb)*3+xyz] = result;
 | 
|---|
| 2433 |         }
 | 
|---|
| 2434 |       cartb++;
 | 
|---|
| 2435 |       } END_FOR_CART;
 | 
|---|
| 2436 |     carta++;
 | 
|---|
| 2437 |     } END_FOR_CART;
 | 
|---|
| 2438 | }
 | 
|---|
| 2439 | 
 | 
|---|
| 2440 | void
 | 
|---|
| 2441 | Int1eV3::comp_prim_block_efield_build_b(int b, int m)
 | 
|---|
| 2442 | {
 | 
|---|
| 2443 |   double *I000 = efield_inter(0,b,m);
 | 
|---|
| 2444 |   double *I010 = efield_inter(0,b-1,m);
 | 
|---|
| 2445 |   double *I011 = efield_inter(0,b-1,m+1);
 | 
|---|
| 2446 |   double *I020 = (b>1?efield_inter(0,b-2,m):0);
 | 
|---|
| 2447 |   double *I021 = (b>1?efield_inter(0,b-2,m+1):0);
 | 
|---|
| 2448 |   double *nucI011 = inter(0,b-1,m+1);
 | 
|---|
| 2449 |   int xyz;
 | 
|---|
| 2450 |   int i2,j2,k2;
 | 
|---|
| 2451 |   int cartb=0;
 | 
|---|
| 2452 |   FOR_CART(i2,j2,k2,b) {
 | 
|---|
| 2453 |     for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2454 |       double result = 0.0;
 | 
|---|
| 2455 | 
 | 
|---|
| 2456 |       if (i2) {
 | 
|---|
| 2457 |         int bm1 = INT_CARTINDEX(b-1,i2-1,j2);
 | 
|---|
| 2458 |         result  = PmB[0] * I010[(bm1)*3+xyz];
 | 
|---|
| 2459 |         result -= PmC[0] * I011[(bm1)*3+xyz];
 | 
|---|
| 2460 |         if (i2>1) {
 | 
|---|
| 2461 |           int bm2 = INT_CARTINDEX(b-2,i2-2,j2);
 | 
|---|
| 2462 |           result += oo2zeta * (i2-1) * (I020[(bm2)*3+xyz]
 | 
|---|
| 2463 |                                         - I021[(bm2)*3+xyz]);
 | 
|---|
| 2464 |           }
 | 
|---|
| 2465 |         if (xyz==0) result += nucI011[bm1];
 | 
|---|
| 2466 |         }
 | 
|---|
| 2467 |       else if (j2) {
 | 
|---|
| 2468 |         int bm1 = INT_CARTINDEX(b-1,i2,j2-1);
 | 
|---|
| 2469 |         result  = PmB[1] * I010[(bm1)*3+xyz];
 | 
|---|
| 2470 |         result -= PmC[1] * I011[(bm1)*3+xyz];
 | 
|---|
| 2471 |         if (j2>1) {
 | 
|---|
| 2472 |           int bm2 = INT_CARTINDEX(b-2,i2,j2-2);
 | 
|---|
| 2473 |           result += oo2zeta * (j2-1) * (I020[(bm2)*3+xyz]
 | 
|---|
| 2474 |                                         - I021[(bm2)*3+xyz]);
 | 
|---|
| 2475 |           }
 | 
|---|
| 2476 |         if (xyz==1) result += nucI011[bm1];
 | 
|---|
| 2477 |         }
 | 
|---|
| 2478 |       else if (k2) {
 | 
|---|
| 2479 |         int bm1 = INT_CARTINDEX(b-1,i2,j2);
 | 
|---|
| 2480 |         result  = PmB[2] * I010[(bm1)*3+xyz];
 | 
|---|
| 2481 |         result -= PmC[2] * I011[(bm1)*3+xyz];
 | 
|---|
| 2482 |         if (k2>1) {
 | 
|---|
| 2483 |           int bm2 = INT_CARTINDEX(b-2,i2,j2);
 | 
|---|
| 2484 |           result += oo2zeta * (k2-1) * (I020[(bm2)*3+xyz]
 | 
|---|
| 2485 |                                         - I021[(bm2)*3+xyz]);
 | 
|---|
| 2486 |           }
 | 
|---|
| 2487 |         if (xyz==2) result += nucI011[bm1];
 | 
|---|
| 2488 |         }
 | 
|---|
| 2489 | 
 | 
|---|
| 2490 |       I000[(cartb)*3+xyz] = result;
 | 
|---|
| 2491 |       }
 | 
|---|
| 2492 |     cartb++;
 | 
|---|
| 2493 |     } END_FOR_CART;
 | 
|---|
| 2494 | }
 | 
|---|
| 2495 | 
 | 
|---|
| 2496 | double
 | 
|---|
| 2497 | Int1eV3::comp_prim_efield(int xyz, int i1, int j1, int k1,
 | 
|---|
| 2498 |                           int i2, int j2, int k2, int m)
 | 
|---|
| 2499 | {
 | 
|---|
| 2500 |   double result;
 | 
|---|
| 2501 | 
 | 
|---|
| 2502 |   /* if ((xyz != 0) || (i1 != 1)) return 0.0; */
 | 
|---|
| 2503 | 
 | 
|---|
| 2504 |   if (i1) {
 | 
|---|
| 2505 |     result  = PmA[0] * comp_prim_efield(xyz,i1-1,j1,k1,i2,j2,k2,m);
 | 
|---|
| 2506 |     result -= PmC[0] * comp_prim_efield(xyz,i1-1,j1,k1,i2,j2,k2,m+1);
 | 
|---|
| 2507 |     if (i1>1) result += oo2zeta * (i1-1)
 | 
|---|
| 2508 |                        * (  comp_prim_efield(xyz,i1-2,j1,k1,i2,j2,k2,m)
 | 
|---|
| 2509 |                           - comp_prim_efield(xyz,i1-2,j1,k1,i2,j2,k2,m+1));
 | 
|---|
| 2510 |     if (i2) result += oo2zeta * i2
 | 
|---|
| 2511 |                      * (  comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m)
 | 
|---|
| 2512 |                         - comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m+1));
 | 
|---|
| 2513 |     if (xyz==0) result += comp_prim_nuclear(i1-1,j1,k1,i2,j2,k2,m+1);
 | 
|---|
| 2514 |     }
 | 
|---|
| 2515 |   else if (j1) {
 | 
|---|
| 2516 |     result  = PmA[1] * comp_prim_efield(xyz,i1,j1-1,k1,i2,j2,k2,m);
 | 
|---|
| 2517 |     result -= PmC[1] * comp_prim_efield(xyz,i1,j1-1,k1,i2,j2,k2,m+1);
 | 
|---|
| 2518 |     if (j1>1) result += oo2zeta * (j1-1)
 | 
|---|
| 2519 |                        * (  comp_prim_efield(xyz,i1,j1-2,k1,i2,j2,k2,m)
 | 
|---|
| 2520 |                           - comp_prim_efield(xyz,i1,j1-2,k1,i2,j2,k2,m+1));
 | 
|---|
| 2521 |     if (j2) result += oo2zeta * j2
 | 
|---|
| 2522 |                      * (  comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m)
 | 
|---|
| 2523 |                         - comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m+1));
 | 
|---|
| 2524 |     if (xyz==1) result += comp_prim_nuclear(i1,j1-1,k1,i2,j2,k2,m+1);
 | 
|---|
| 2525 |     }
 | 
|---|
| 2526 |   else if (k1) {
 | 
|---|
| 2527 |     result  = PmA[2] * comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2,m);
 | 
|---|
| 2528 |     result -= PmC[2] * comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2,m+1);
 | 
|---|
| 2529 |     if (k1>1) result += oo2zeta * (k1-1)
 | 
|---|
| 2530 |                        * (  comp_prim_efield(xyz,i1,j1,k1-2,i2,j2,k2,m)
 | 
|---|
| 2531 |                           - comp_prim_efield(xyz,i1,j1,k1-2,i2,j2,k2,m+1));
 | 
|---|
| 2532 |     if (k2) result += oo2zeta * k2
 | 
|---|
| 2533 |                      * (  comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m)
 | 
|---|
| 2534 |                         - comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m+1));
 | 
|---|
| 2535 |     if (xyz==2) result += comp_prim_nuclear(i1,j1,k1-1,i2,j2,k2,m+1);
 | 
|---|
| 2536 |     }
 | 
|---|
| 2537 |   else if (i2) {
 | 
|---|
| 2538 |     result  = PmB[0] * comp_prim_efield(xyz,i1,j1,k1,i2-1,j2,k2,m);
 | 
|---|
| 2539 |     result -= PmC[0] * comp_prim_efield(xyz,i1,j1,k1,i2-1,j2,k2,m+1);
 | 
|---|
| 2540 |     if (i2>1) result += oo2zeta * (i2-1)
 | 
|---|
| 2541 |                        * (  comp_prim_efield(xyz,i1,j1,k1,i2-2,j2,k2,m)
 | 
|---|
| 2542 |                           - comp_prim_efield(xyz,i1,j1,k1,i2-2,j2,k2,m+1));
 | 
|---|
| 2543 |     if (i1) result += oo2zeta * i1
 | 
|---|
| 2544 |                      * (  comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m)
 | 
|---|
| 2545 |                         - comp_prim_efield(xyz,i1-1,j1,k1,i2-1,j2,k2,m+1));
 | 
|---|
| 2546 |     if (xyz==0) result += comp_prim_nuclear(i1,j1,k1,i2-1,j2,k2,m+1);
 | 
|---|
| 2547 |     }
 | 
|---|
| 2548 |   else if (j2) {
 | 
|---|
| 2549 |     result  = PmB[1] * comp_prim_efield(xyz,i1,j1,k1,i2,j2-1,k2,m);
 | 
|---|
| 2550 |     result -= PmC[1] * comp_prim_efield(xyz,i1,j1,k1,i2,j2-1,k2,m+1);
 | 
|---|
| 2551 |     if (j2>1) result += oo2zeta * (j2-1)
 | 
|---|
| 2552 |                        * (  comp_prim_efield(xyz,i1,j1,k1,i2,j2-2,k2,m)
 | 
|---|
| 2553 |                           - comp_prim_efield(xyz,i1,j1,k1,i2,j2-2,k2,m+1));
 | 
|---|
| 2554 |     if (j1) result += oo2zeta * j1
 | 
|---|
| 2555 |                      * (  comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m)
 | 
|---|
| 2556 |                         - comp_prim_efield(xyz,i1,j1-1,k1,i2,j2-1,k2,m+1));
 | 
|---|
| 2557 |     if (xyz==1) result += comp_prim_nuclear(i1,j1,k1,i2,j2-1,k2,m+1);
 | 
|---|
| 2558 |     }
 | 
|---|
| 2559 |   else if (k2) {
 | 
|---|
| 2560 |     result  = PmB[2] * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-1,m);
 | 
|---|
| 2561 |     result -= PmC[2] * comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-1,m+1);
 | 
|---|
| 2562 |     if (k2>1) result += oo2zeta * (k2-1)
 | 
|---|
| 2563 |                        * (  comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-2,m)
 | 
|---|
| 2564 |                           - comp_prim_efield(xyz,i1,j1,k1,i2,j2,k2-2,m+1));
 | 
|---|
| 2565 |     if (k1) result += oo2zeta * k1
 | 
|---|
| 2566 |                      * (  comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m)
 | 
|---|
| 2567 |                         - comp_prim_efield(xyz,i1,j1,k1-1,i2,j2,k2-1,m+1));
 | 
|---|
| 2568 |     if (xyz==2) result += comp_prim_nuclear(i1,j1,k1,i2,j2,k2-1,m+1);
 | 
|---|
| 2569 |     }
 | 
|---|
| 2570 |   else {
 | 
|---|
| 2571 |     /* We arrive here if we have a (s| |s) type efield integral.
 | 
|---|
| 2572 |      * The fjttable contains the standard (s| |s) nuc attr integrals.
 | 
|---|
| 2573 |      */
 | 
|---|
| 2574 |     result = 2.0 * zeta * PmC[xyz] * fjttable_[m+1];
 | 
|---|
| 2575 |     }
 | 
|---|
| 2576 | 
 | 
|---|
| 2577 |   return result;
 | 
|---|
| 2578 |   }
 | 
|---|
| 2579 | 
 | 
|---|
| 2580 | 
 | 
|---|
| 2581 | /* --------------------------------------------------------------- */
 | 
|---|
| 2582 | /* ------------- Routines for dipole moment integrals ------------ */
 | 
|---|
| 2583 | /* --------------------------------------------------------------- */
 | 
|---|
| 2584 | 
 | 
|---|
| 2585 | /* This computes the dipole integrals between functions in two shells.
 | 
|---|
| 2586 |  * The result is accumulated in the buffer in the form bf1 x y z, bf2
 | 
|---|
| 2587 |  * x y z, etc.  The last arg, com, is the origin of the coordinate
 | 
|---|
| 2588 |  * system used to compute the dipole moment.
 | 
|---|
| 2589 |  */
 | 
|---|
| 2590 | void
 | 
|---|
| 2591 | Int1eV3::int_accum_shell_dipole(int ish, int jsh,
 | 
|---|
| 2592 |                                 double *com)
 | 
|---|
| 2593 | {
 | 
|---|
| 2594 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 2595 |   int gc1,gc2;
 | 
|---|
| 2596 |   int index,index1,index2;
 | 
|---|
| 2597 |   double dipole[3];
 | 
|---|
| 2598 |   int xyz;
 | 
|---|
| 2599 | 
 | 
|---|
| 2600 |   for (xyz=0; xyz<3; xyz++) C[xyz] = com[xyz];
 | 
|---|
| 2601 | 
 | 
|---|
| 2602 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 2603 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 2604 |   for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2605 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 2606 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 2607 |     }
 | 
|---|
| 2608 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 2609 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 2610 |   index = 0;
 | 
|---|
| 2611 |   FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
 | 
|---|
| 2612 |     FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
 | 
|---|
| 2613 |       comp_shell_dipole(dipole,gc1,i1,j1,k1,gc2,i2,j2,k2);
 | 
|---|
| 2614 |       for(mu=0; mu < 3; mu++) {
 | 
|---|
| 2615 |         cartesianbuffer[index] = dipole[mu];
 | 
|---|
| 2616 |         index++;
 | 
|---|
| 2617 |         }
 | 
|---|
| 2618 |       END_FOR_GCCART_GS(index2)
 | 
|---|
| 2619 |     END_FOR_GCCART_GS(index1)
 | 
|---|
| 2620 |   accum_transform_1e_xyz(integral_,
 | 
|---|
| 2621 |                          cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 2622 |   }
 | 
|---|
| 2623 | 
 | 
|---|
| 2624 | /* This computes the dipole integrals between functions in two shells.
 | 
|---|
| 2625 |  * The result is placed in the buffer in the form bf1 x y z, bf2
 | 
|---|
| 2626 |  * x y z, etc.  The last arg, com, is the origin of the coordinate
 | 
|---|
| 2627 |  * system used to compute the dipole moment.
 | 
|---|
| 2628 |  */
 | 
|---|
| 2629 | void
 | 
|---|
| 2630 | Int1eV3::dipole(int ish, int jsh, double *com)
 | 
|---|
| 2631 | {
 | 
|---|
| 2632 |   int c1,i1,j1,k1,c2,i2,j2,k2;
 | 
|---|
| 2633 |   int gc1,gc2;
 | 
|---|
| 2634 |   int index,index1,index2;
 | 
|---|
| 2635 |   double dipole[3];
 | 
|---|
| 2636 |   int xyz;
 | 
|---|
| 2637 | 
 | 
|---|
| 2638 |   for (xyz=0; xyz<3; xyz++) C[xyz] = com[xyz];
 | 
|---|
| 2639 | 
 | 
|---|
| 2640 |   c1 = bs1_->shell_to_center(ish);
 | 
|---|
| 2641 |   c2 = bs2_->shell_to_center(jsh);
 | 
|---|
| 2642 |   for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2643 |       A[xyz] = bs1_->r(c1,xyz);
 | 
|---|
| 2644 |       B[xyz] = bs2_->r(c2,xyz);
 | 
|---|
| 2645 |     }
 | 
|---|
| 2646 |   gshell1 = &bs1_->shell(ish);
 | 
|---|
| 2647 |   gshell2 = &bs2_->shell(jsh);
 | 
|---|
| 2648 |   index = 0;
 | 
|---|
| 2649 |   FOR_GCCART_GS(gc1,index1,i1,j1,k1,gshell1)
 | 
|---|
| 2650 |     FOR_GCCART_GS(gc2,index2,i2,j2,k2,gshell2)
 | 
|---|
| 2651 |       comp_shell_dipole(dipole,gc1,i1,j1,k1,gc2,i2,j2,k2);
 | 
|---|
| 2652 |       for(mu=0; mu < 3; mu++) {
 | 
|---|
| 2653 |         cartesianbuffer[index] = dipole[mu];
 | 
|---|
| 2654 |         index++;
 | 
|---|
| 2655 |         }
 | 
|---|
| 2656 |       END_FOR_GCCART_GS(index2)
 | 
|---|
| 2657 |     END_FOR_GCCART_GS(index1)
 | 
|---|
| 2658 |   transform_1e_xyz(integral_,
 | 
|---|
| 2659 |                    cartesianbuffer, buff, gshell1, gshell2);
 | 
|---|
| 2660 |   }
 | 
|---|
| 2661 | 
 | 
|---|
| 2662 | void
 | 
|---|
| 2663 | Int1eV3::comp_shell_dipole(double* dipole,
 | 
|---|
| 2664 |                            int gc1, int i1, int j1, int k1,
 | 
|---|
| 2665 |                            int gc2, int i2, int j2, int k2)
 | 
|---|
| 2666 | {
 | 
|---|
| 2667 |   double exp1,exp2;
 | 
|---|
| 2668 |   int i,j,xyz;
 | 
|---|
| 2669 |   double Pi;
 | 
|---|
| 2670 |   double oozeta;
 | 
|---|
| 2671 |   double AmB,AmB2;
 | 
|---|
| 2672 |   double tmp;
 | 
|---|
| 2673 | 
 | 
|---|
| 2674 |   dipole[0] = dipole[1] = dipole[2] = 0.0;
 | 
|---|
| 2675 | 
 | 
|---|
| 2676 |   if ((i1<0)||(j1<0)||(k1<0)||(i2<0)||(j2<0)||(k2<0)) return;
 | 
|---|
| 2677 | 
 | 
|---|
| 2678 |   /* Loop over the primitives in the shells. */
 | 
|---|
| 2679 |   for (i=0; i<gshell1->nprimitive(); i++) {
 | 
|---|
| 2680 |     for (j=0; j<gshell2->nprimitive(); j++) {
 | 
|---|
| 2681 | 
 | 
|---|
| 2682 |       /* Compute the intermediates. */
 | 
|---|
| 2683 |       exp1 = gshell1->exponent(i);
 | 
|---|
| 2684 |       exp2 = gshell2->exponent(j);
 | 
|---|
| 2685 |       oozeta = 1.0/(exp1 + exp2);
 | 
|---|
| 2686 |       oo2zeta = 0.5*oozeta;
 | 
|---|
| 2687 |       AmB2 = 0.0;
 | 
|---|
| 2688 |       for (xyz=0; xyz<3; xyz++) {
 | 
|---|
| 2689 |         Pi = oozeta*(exp1 * A[xyz] + exp2 * B[xyz]);
 | 
|---|
| 2690 |         PmA[xyz] = Pi - A[xyz];
 | 
|---|
| 2691 |         PmB[xyz] = Pi - B[xyz];
 | 
|---|
| 2692 |         PmC[xyz] = Pi - C[xyz];
 | 
|---|
| 2693 |         AmB = A[xyz] - B[xyz];
 | 
|---|
| 2694 |         AmB2 += AmB*AmB;
 | 
|---|
| 2695 |         }
 | 
|---|
| 2696 |       ss =   pow(M_PI/(exp1+exp2),1.5)
 | 
|---|
| 2697 |            * exp(- oozeta * exp1 * exp2 * AmB2);
 | 
|---|
| 2698 |       for (mu=0; mu<3; mu++) sMus[mu] = ss * PmC[mu];
 | 
|---|
| 2699 |       tmp     =  gshell1->coefficient_unnorm(gc1,i)
 | 
|---|
| 2700 |                * gshell2->coefficient_unnorm(gc2,j);
 | 
|---|
| 2701 |       if (exponent_weighted == 0) tmp *= exp1;
 | 
|---|
| 2702 |       else if (exponent_weighted == 1) tmp *= exp2;
 | 
|---|
| 2703 |       dipole[0] += tmp * comp_prim_dipole(0,i1,j1,k1,i2,j2,k2);
 | 
|---|
| 2704 |       dipole[1] += tmp * comp_prim_dipole(1,i1,j1,k1,i2,j2,k2);
 | 
|---|
| 2705 |       dipole[2] += tmp * comp_prim_dipole(2,i1,j1,k1,i2,j2,k2);
 | 
|---|
| 2706 |       }
 | 
|---|
| 2707 |     }
 | 
|---|
| 2708 | 
 | 
|---|
| 2709 |   }
 | 
|---|
| 2710 | 
 | 
|---|
| 2711 | double
 | 
|---|
| 2712 | Int1eV3::comp_prim_dipole(int axis,
 | 
|---|
| 2713 |                           int i1, int j1, int k1,
 | 
|---|
| 2714 |                           int i2, int j2, int k2)
 | 
|---|
| 2715 | {
 | 
|---|
| 2716 |   double result;
 | 
|---|
| 2717 | 
 | 
|---|
| 2718 |   if (i1) {
 | 
|---|
| 2719 |     result = PmA[0] * comp_prim_dipole(axis,i1-1,j1,k1,i2,j2,k2);
 | 
|---|
| 2720 |     if (i2) 
 | 
|---|
| 2721 |       result += oo2zeta*i2*comp_prim_dipole(axis,i1-1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 2722 |     if (i1>1)
 | 
|---|
| 2723 |       result += oo2zeta*(i1-1)*comp_prim_dipole(axis,i1-2,j1,k1,i2,j2,k2);
 | 
|---|
| 2724 |     if(axis==0) result += oo2zeta*comp_prim_overlap(i1-1,j1,k1,i2,j2,k2);
 | 
|---|
| 2725 |     return result;
 | 
|---|
| 2726 |     }
 | 
|---|
| 2727 |   if (j1) {
 | 
|---|
| 2728 |     result = PmA[1] * comp_prim_dipole(axis,i1,j1-1,k1,i2,j2,k2);
 | 
|---|
| 2729 |     if (j2) 
 | 
|---|
| 2730 |       result += oo2zeta*j2*comp_prim_dipole(axis,i1,j1-1,k1,i2,j2-1,k2);
 | 
|---|
| 2731 |     if (j1>1) 
 | 
|---|
| 2732 |       result += oo2zeta*(j1-1)*comp_prim_dipole(axis,i1,j1-2,k1,i2,j2,k2);
 | 
|---|
| 2733 |     if(axis==1) result += oo2zeta*comp_prim_overlap(i1,j1-1,k1,i2,j2,k2);
 | 
|---|
| 2734 |     return result;
 | 
|---|
| 2735 |     }
 | 
|---|
| 2736 |   if (k1) {
 | 
|---|
| 2737 |     result = PmA[2] * comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2);
 | 
|---|
| 2738 |     if (k2) 
 | 
|---|
| 2739 |       result += oo2zeta*k2*comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2-1);
 | 
|---|
| 2740 |     if (k1>1) 
 | 
|---|
| 2741 |       result += oo2zeta*(k1-1)*comp_prim_dipole(axis,i1,j1,k1-2,i2,j2,k2);
 | 
|---|
| 2742 |     if(axis==2) result += oo2zeta*comp_prim_overlap(i1,j1,k1-1,i2,j2,k2);
 | 
|---|
| 2743 |     return result;
 | 
|---|
| 2744 |     }
 | 
|---|
| 2745 |   if (i2) {
 | 
|---|
| 2746 |     result = PmB[0] * comp_prim_dipole(axis,i1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 2747 |     if (i1) 
 | 
|---|
| 2748 |       result += oo2zeta*i1*comp_prim_dipole(axis,i1-1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 2749 |     if (i2>1) 
 | 
|---|
| 2750 |       result += oo2zeta*(i2-1)*comp_prim_dipole(axis,i1,j1,k1,i2-2,j2,k2);
 | 
|---|
| 2751 |     if(axis==0) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2-1,j2,k2);
 | 
|---|
| 2752 |     return result;
 | 
|---|
| 2753 |     }
 | 
|---|
| 2754 |   if (j2) {
 | 
|---|
| 2755 |     result = PmB[1] * comp_prim_dipole(axis,i1,j1,k1,i2,j2-1,k2);
 | 
|---|
| 2756 |     if (j1) 
 | 
|---|
| 2757 |       result += oo2zeta*i1*comp_prim_dipole(axis,i1,j1-1,k1,i2,j2-1,k2);
 | 
|---|
| 2758 |     if (j2>1) 
 | 
|---|
| 2759 |       result += oo2zeta*(j2-1)*comp_prim_dipole(axis,i1,j1,k1,i2,j2-2,k2);
 | 
|---|
| 2760 |     if(axis==1) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2,j2-1,k2);
 | 
|---|
| 2761 |     return result;
 | 
|---|
| 2762 |     }
 | 
|---|
| 2763 |   if (k2) {
 | 
|---|
| 2764 |     result = PmB[2] * comp_prim_dipole(axis,i1,j1,k1,i2,j2,k2-1);
 | 
|---|
| 2765 |     if (k1) 
 | 
|---|
| 2766 |       result += oo2zeta*i1*comp_prim_dipole(axis,i1,j1,k1-1,i2,j2,k2-1);
 | 
|---|
| 2767 |     if (k2>1) 
 | 
|---|
| 2768 |       result += oo2zeta*(k2-1)*comp_prim_dipole(axis,i1,j1,k1,i2,j2,k2-2);
 | 
|---|
| 2769 |     if(axis==2) result += oo2zeta*comp_prim_overlap(i1,j1,k1,i2,j2,k2-1);
 | 
|---|
| 2770 |     return result;
 | 
|---|
| 2771 |     }
 | 
|---|
| 2772 | 
 | 
|---|
| 2773 |   return sMus[axis];
 | 
|---|
| 2774 |   }
 | 
|---|
| 2775 | 
 | 
|---|
| 2776 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 2777 | 
 | 
|---|
| 2778 | // Local Variables:
 | 
|---|
| 2779 | // mode: c++
 | 
|---|
| 2780 | // c-file-style: "CLJ-CONDENSED"
 | 
|---|
| 2781 | // End:
 | 
|---|