// // hsosks.cc --- implementation of restricted open shell Kohn-Sham SCF // derived from clks.cc // // Copyright (C) 1997 Limit Point Systems, Inc. // // Author: Edward Seidl // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #ifdef __GNUC__ #pragma implementation #endif #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace sc; /////////////////////////////////////////////////////////////////////////// // HSOSKS static ClassDesc HSOSKS_cd( typeid(HSOSKS),"HSOSKS",1,"public HSOSSCF", 0, create, create); HSOSKS::HSOSKS(StateIn& s) : SavableState(s), HSOSSCF(s) { exc_=0; integrator_ << SavableState::restore_state(s); functional_ << SavableState::restore_state(s); vxc_a_ = basis_matrixkit()->symmmatrix(so_dimension()); vxc_a_.restore(s); vxc_b_ = basis_matrixkit()->symmmatrix(so_dimension()); vxc_b_.restore(s); } HSOSKS::HSOSKS(const Ref& keyval) : HSOSSCF(keyval) { exc_=0; integrator_ << keyval->describedclassvalue("integrator"); if (integrator_.null()) integrator_ = new RadialAngularIntegrator(); functional_ << keyval->describedclassvalue("functional"); if (functional_.null()) { ExEnv::outn() << "ERROR: " << class_name() << ": no \"functional\" given" << endl; abort(); } } HSOSKS::~HSOSKS() { } void HSOSKS::save_data_state(StateOut& s) { HSOSSCF::save_data_state(s); SavableState::save_state(integrator_.pointer(),s); SavableState::save_state(functional_.pointer(),s); vxc_a_.save(s); vxc_b_.save(s); } int HSOSKS::value_implemented() const { return 1; } int HSOSKS::gradient_implemented() const { return 1; } void HSOSKS::print(ostream&o) const { o << indent << "Restricted Open Shell Kohn-Sham (HSOSKS) Parameters:" << endl; o << incindent; HSOSSCF::print(o); o << indent << "Functional:" << endl; o << incindent; functional_->print(o); o << decindent; o << indent << "Integrator:" << endl; o << incindent; integrator_->print(o); o << decindent; o << decindent; } double HSOSKS::scf_energy() { double ehf = HSOSSCF::scf_energy(); return ehf+exc_; } RefSymmSCMatrix HSOSKS::effective_fock() { RefSymmSCMatrix mofock(oso_dimension(), basis_matrixkit()); mofock.assign(0.0); RefSymmSCMatrix mofocko(oso_dimension(), basis_matrixkit()); mofocko.assign(0.0); // use eigenvectors if oso_scf_vector_ is null if (oso_scf_vector_.null()) { mofock.accumulate_transform(eigenvectors(), fock(0)+cl_vxc(), SCMatrix::TransposeTransform); mofocko.accumulate_transform(eigenvectors(), fock(1)+op_vxc(), SCMatrix::TransposeTransform); } else { RefSCMatrix so_to_oso_tr = so_to_orthog_so().t(); mofock.accumulate_transform(so_to_oso_tr * oso_scf_vector_, fock(0)+cl_vxc(), SCMatrix::TransposeTransform); mofocko.accumulate_transform(so_to_oso_tr * oso_scf_vector_, fock(1)+op_vxc(), SCMatrix::TransposeTransform); } Ref op = new GSGeneralEffH(this); mofock.element_op(op, mofocko); return mofock; } RefSymmSCMatrix HSOSKS::lagrangian() { RefSCMatrix so_to_oso_tr = so_to_orthog_so().t(); RefSymmSCMatrix mofock(oso_dimension(), basis_matrixkit()); mofock.assign(0.0); mofock.accumulate_transform(so_to_oso_tr * oso_scf_vector_, cl_fock_.result_noupdate()+cl_vxc(), SCMatrix::TransposeTransform); RefSymmSCMatrix mofocko(oso_dimension(), basis_matrixkit()); mofocko.assign(0.0); mofocko.accumulate_transform(so_to_oso_tr * oso_scf_vector_, op_fock_.result_noupdate()+op_vxc(), SCMatrix::TransposeTransform); mofock.scale(2.0); Ref op = new MOLagrangian(this); mofock.element_op(op, mofocko); mofocko=0; // transform MO lagrangian to SO basis RefSymmSCMatrix so_lag(so_dimension(), basis_matrixkit()); so_lag.assign(0.0); so_lag.accumulate_transform(so_to_oso_tr * oso_scf_vector_, mofock); // and then from SO to AO Ref pl = integral()->petite_list(); RefSymmSCMatrix ao_lag = pl->to_AO_basis(so_lag); ao_lag.scale(-1.0); return ao_lag; } Ref HSOSKS::extrap_data() { Ref data = new SymmSCMatrix4SCExtrapData(cl_fock_.result_noupdate(), op_fock_.result_noupdate(), vxc_a_, vxc_b_); return data; } ////////////////////////////////////////////////////////////////////////////// void HSOSKS::ao_fock(double accuracy) { Ref pl = integral()->petite_list(basis()); // calculate G. First transform cl_dens_diff_ to the AO basis, then // scale the off-diagonal elements by 2.0 RefSymmSCMatrix dd = cl_dens_diff_; cl_dens_diff_ = pl->to_AO_basis(dd); cl_dens_diff_->scale(2.0); cl_dens_diff_->scale_diagonal(0.5); RefSymmSCMatrix ddo = op_dens_diff_; op_dens_diff_ = pl->to_AO_basis(ddo); op_dens_diff_->scale(2.0); op_dens_diff_->scale_diagonal(0.5); // now try to figure out the matrix specialization we're dealing with // if we're using Local matrices, then there's just one subblock, or // see if we can convert G and P to local matrices if (local_ || local_dens_) { double *gmat, *gmato, *pmat, *pmato; // grab the data pointers from the G and P matrices RefSymmSCMatrix gtmp = get_local_data(cl_gmat_, gmat, SCF::Accum); RefSymmSCMatrix ptmp = get_local_data(cl_dens_diff_, pmat, SCF::Read); RefSymmSCMatrix gotmp = get_local_data(op_gmat_, gmato, SCF::Accum); RefSymmSCMatrix potmp = get_local_data(op_dens_diff_, pmato, SCF::Read); signed char * pmax = init_pmax(pmat); // LocalHSOSKSContribution lclc(gmat, pmat, gmato, pmato, functional_->a0()); // LocalGBuild // gb(lclc, tbi_, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0); // gb.run(); int i; int nthread = threadgrp_->nthread(); LocalGBuild **gblds = new LocalGBuild*[nthread]; LocalHSOSKSContribution **conts = new LocalHSOSKSContribution*[nthread]; double **gmats = new double*[nthread]; gmats[0] = gmat; double **gmatos = new double*[nthread]; gmatos[0] = gmato; Ref bs = basis(); int ntri = i_offset(bs->nbasis()); double gmat_accuracy = accuracy; if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); } for (i=0; i < nthread; i++) { if (i) { gmats[i] = new double[ntri]; memset(gmats[i], 0, sizeof(double)*ntri); gmatos[i] = new double[ntri]; memset(gmatos[i], 0, sizeof(double)*ntri); } conts[i] = new LocalHSOSKSContribution(gmats[i], pmat, gmatos[i], pmato, functional_->a0()); gblds[i] = new LocalGBuild(*conts[i], tbis_[i], pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i ); threadgrp_->add_thread(i, gblds[i]); } tim_enter("start thread"); if (threadgrp_->start_threads() < 0) { ExEnv::err0() << indent << "HSOSKS: error starting threads" << endl; abort(); } tim_exit("start thread"); tim_enter("stop thread"); if (threadgrp_->wait_threads() < 0) { ExEnv::err0() << indent << "HSOSKS: error waiting for threads" << endl; abort(); } tim_exit("stop thread"); double tnint=0; for (i=0; i < nthread; i++) { tnint += gblds[i]->tnint; if (i) { for (int j=0; j < ntri; j++) { gmat[j] += gmats[i][j]; gmato[j] += gmatos[i][j]; } delete[] gmats[i]; delete[] gmatos[i]; } delete gblds[i]; delete conts[i]; } delete[] gmats; delete[] gmatos; delete[] gblds; delete[] conts; delete[] pmax; scf_grp_->sum(&tnint, 1, 0, 0); ExEnv::out0() << indent << scprintf("%20.0f integrals\n", tnint); // if we're running on multiple processors, then sum the G matrices if (scf_grp_->n() > 1) { scf_grp_->sum(gmat, i_offset(basis()->nbasis())); scf_grp_->sum(gmato, i_offset(basis()->nbasis())); } // if we're running on multiple processors, or we don't have local // matrices, then accumulate gtmp back into G if (!local_ || scf_grp_->n() > 1) { cl_gmat_->convert_accumulate(gtmp); op_gmat_->convert_accumulate(gotmp); } } // for now quit else { ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n"; abort(); } RefSymmSCMatrix dens_a = alpha_ao_density(); RefSymmSCMatrix dens_b = beta_ao_density(); integrator_->set_compute_potential_integrals(1); integrator_->set_accuracy(accuracy); integrator_->integrate(functional_, dens_a, dens_b); exc_ = integrator_->value(); vxc_a_ = dens_a.clone(); vxc_a_->assign((double*)integrator_->alpha_vmat()); vxc_a_ = pl->to_SO_basis(vxc_a_); vxc_b_ = dens_b.clone(); vxc_b_->assign((double*)integrator_->beta_vmat()); vxc_b_ = pl->to_SO_basis(vxc_b_); // get rid of AO delta P cl_dens_diff_ = dd; dd = cl_dens_diff_.clone(); op_dens_diff_ = ddo; ddo = op_dens_diff_.clone(); // now symmetrize the skeleton G matrix, placing the result in dd RefSymmSCMatrix skel_gmat = cl_gmat_.copy(); skel_gmat.scale(1.0/(double)pl->order()); pl->symmetrize(skel_gmat,dd); skel_gmat = op_gmat_.copy(); skel_gmat.scale(1.0/(double)pl->order()); pl->symmetrize(skel_gmat,ddo); // F = H+G cl_fock_.result_noupdate().assign(hcore_); cl_fock_.result_noupdate().accumulate(dd); // Fo = H+G-Go op_fock_.result_noupdate().assign(cl_fock_.result_noupdate()); ddo.scale(-1.0); op_fock_.result_noupdate().accumulate(ddo); ddo=0; dd.assign(0.0); accumddh_->accum(dd); cl_fock_.result_noupdate().accumulate(dd); op_fock_.result_noupdate().accumulate(dd); dd=0; cl_fock_.computed()=1; op_fock_.computed()=1; } ///////////////////////////////////////////////////////////////////////////// void HSOSKS::two_body_energy(double &ec, double &ex) { tim_enter("hsosks e2"); ec = 0.0; ex = 0.0; if (local_ || local_dens_) { // grab the data pointers from the G and P matrices double *dpmat; double *spmat; tim_enter("local data"); RefSymmSCMatrix ddens = beta_ao_density(); RefSymmSCMatrix sdens = alpha_ao_density() - ddens; ddens->scale(2.0); ddens->accumulate(sdens); ddens->scale(2.0); ddens->scale_diagonal(0.5); sdens->scale(2.0); sdens->scale_diagonal(0.5); RefSymmSCMatrix dptmp = get_local_data(ddens, dpmat, SCF::Read); RefSymmSCMatrix sptmp = get_local_data(sdens, spmat, SCF::Read); tim_exit("local data"); // initialize the two electron integral classes Ref tbi = integral()->electron_repulsion(); tbi->set_integral_storage(0); signed char * pmax = init_pmax(dpmat); LocalHSOSKSEnergyContribution lclc(dpmat, spmat, functional_->a0()); Ref pl = integral()->petite_list(); LocalGBuild gb(lclc, tbi, pl, basis(), scf_grp_, pmax, desired_value_accuracy()/100.0); gb.run(); delete[] pmax; ec = lclc.ec; ex = lclc.ex; } else { ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n"; abort(); } tim_exit("hsoshf e2"); } ///////////////////////////////////////////////////////////////////////////// void HSOSKS::two_body_deriv(double * tbgrad) { tim_enter("grad"); int natom3 = 3*molecule()->natom(); tim_enter("two-body"); double *hfgrad = new double[natom3]; memset(hfgrad,0,sizeof(double)*natom3); two_body_deriv_hf(hfgrad,functional_->a0()); //print_natom_3(hfgrad, "Two-body contribution to DFT gradient"); tim_exit("two-body"); double *dftgrad = new double[natom3]; memset(dftgrad,0,sizeof(double)*natom3); RefSymmSCMatrix dens_a = alpha_ao_density(); RefSymmSCMatrix dens_b = beta_ao_density(); integrator_->init(this); integrator_->set_compute_potential_integrals(0); integrator_->set_accuracy(desired_gradient_accuracy()); integrator_->integrate(functional_, dens_a, dens_b, dftgrad); // must unset the wavefunction so we don't have a circular list that // will not be freed with the reference counting memory manager integrator_->done(); //print_natom_3(dftgrad, "E-X contribution to DFT gradient"); scf_grp_->sum(dftgrad, natom3); for (int i=0; iinit(this); HSOSSCF::init_vector(); } void HSOSKS::done_vector() { integrator_->done(); HSOSSCF::done_vector(); } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "ETS" // End: