[0b990d] | 1 | //
|
---|
| 2 | // fjt.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 2001 Edward Valeev
|
---|
| 5 | //
|
---|
| 6 | // Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>
|
---|
| 7 | // Maintainer: EV
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #ifdef __GNUG__
|
---|
| 29 | #pragma implementation
|
---|
| 30 | #endif
|
---|
| 31 |
|
---|
| 32 | /* These routines are based on the gamfun program of
|
---|
| 33 | * Trygve Ulf Helgaker (fall 1984)
|
---|
| 34 | * and calculates the incomplete gamma function as
|
---|
| 35 | * described by McMurchie & Davidson, J. Comp. Phys. 26 (1978) 218.
|
---|
| 36 | * The original routine computed the function for maximum j = 20.
|
---|
| 37 | */
|
---|
| 38 |
|
---|
| 39 | #include <stdlib.h>
|
---|
| 40 | #include <util/misc/math.h>
|
---|
| 41 |
|
---|
| 42 | #include <iostream>
|
---|
| 43 | #include <chemistry/qc/cints/fjt.h>
|
---|
| 44 |
|
---|
| 45 | using namespace std;
|
---|
| 46 |
|
---|
| 47 | /*------------------------------------------------------
|
---|
| 48 | Initialize Taylor_Fm_Eval object (computes incomplete
|
---|
| 49 | gamma function via Taylor interpolation)
|
---|
| 50 | ------------------------------------------------------*/
|
---|
| 51 | Taylor_Fjt_Eval::Taylor_Fjt_Eval(unsigned int mmax, double accuracy)
|
---|
| 52 | {
|
---|
| 53 | int i, m;
|
---|
| 54 | int T_idx;
|
---|
| 55 | double T, T_new;
|
---|
| 56 | double egamma, func, dfuncdT;
|
---|
| 57 | double term, sum, denom, rel_error;
|
---|
| 58 |
|
---|
| 59 | cutoff = epsilon;
|
---|
| 60 | /*---------------------------------------
|
---|
| 61 | We are doing Taylor interpolation with
|
---|
| 62 | n=TAYLOR_ORDER terms here:
|
---|
| 63 | error <= delT^n/(n+1)!
|
---|
| 64 | ---------------------------------------*/
|
---|
| 65 | order_interp = TAYLOR_ORDER;
|
---|
| 66 | delT = 2.0*pow(cutoff*fac[order_interp+1],
|
---|
| 67 | 1.0/order_interp);
|
---|
| 68 | max_m = mmax + order_interp - 1;
|
---|
| 69 |
|
---|
| 70 | /*------------------------------------------------
|
---|
| 71 | Check if Taylor_Fm_Eval has been initialized with
|
---|
| 72 | the same mmax before:
|
---|
| 73 | 2) yes - re-initialize again
|
---|
| 74 | 3) no - initialize
|
---|
| 75 | ------------------------------------------------*/
|
---|
| 76 | if (grid != NULL || T_crit != NULL) {
|
---|
| 77 | free_Taylor_Fm_Eval();
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | T_crit = new double[max_m + 1]; /*--- m=0 is included! ---*/
|
---|
| 81 | max_T = 0;
|
---|
| 82 | /*--- Figure out T_crit for each m and put into the T_crit ---*/
|
---|
| 83 | for(m=max_m;m>=0;m--) {
|
---|
| 84 | /*------------------------------------------
|
---|
| 85 | Newton-Raphson method to solve
|
---|
| 86 | T^{m-0.5}*exp(-T) = epsilon*Gamma(m+0.5)
|
---|
| 87 | The solution is the max T for which to do
|
---|
| 88 | the interpolation
|
---|
| 89 | ------------------------------------------*/
|
---|
| 90 | T = -log(epsilon);
|
---|
| 91 | egamma = epsilon*sqrt(M_PI)*df[2*m]/pow(2,m);
|
---|
| 92 | T_new = T;
|
---|
| 93 | do {
|
---|
| 94 | T = T_new;
|
---|
| 95 | func = pow(T,m-0.5) * exp(-T) - egamma;
|
---|
| 96 | dfuncdT = ((m-0.5) * pow(T,m-1.5) - pow(T,m-0.5)) * exp(-T);
|
---|
| 97 | if (dfuncdT >= 0.0) {
|
---|
| 98 | T_new *= 2.5;
|
---|
| 99 | continue;
|
---|
| 100 | }
|
---|
| 101 | T_new = T - func/dfuncdT;
|
---|
| 102 | if ( T_new <= 0.0 ) {
|
---|
| 103 | T_new = T / 2.0;
|
---|
| 104 | }
|
---|
| 105 | } while (fabs(func/egamma) >= SOFT_ZERO);
|
---|
| 106 | T_crit[m] = T_new;
|
---|
| 107 | T_idx = floor(T_new/delT);
|
---|
| 108 | if (T_idx > max_T)
|
---|
| 109 | max_T = T_idx;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | /*-------------------------------------------------------
|
---|
| 113 | Tabulate the gamma function from t=delT to T_crit[m]:
|
---|
| 114 | 1) include T=0 though the table is empty for T=0 since
|
---|
| 115 | Fm(0) is simple to compute
|
---|
| 116 | 2) modified MacLaurin series converges fastest for
|
---|
| 117 | the largest m -> use it to compute Fmmax(T)
|
---|
| 118 | see JPC 94, 5564 (1990).
|
---|
| 119 | 3) then either use the series to compute the rest
|
---|
| 120 | of the row or maybe use downward recursion
|
---|
| 121 | -------------------------------------------------------*/
|
---|
| 122 | grid = block_matrix(max_T+1,max_m+1);
|
---|
| 123 | /*--- do the mmax first ---*/
|
---|
| 124 | for(m=0;m<=max_m;m++)
|
---|
| 125 | for(T_idx = max_T;
|
---|
| 126 | T_idx >= 0;
|
---|
| 127 | T_idx--) {
|
---|
| 128 | T = T_idx*delT;
|
---|
| 129 | denom = (m+0.5);
|
---|
| 130 | term = 0.5*exp(-T)/denom;
|
---|
| 131 | sum = term;
|
---|
| 132 | do {
|
---|
| 133 | denom += 1.0;
|
---|
| 134 | term *= T/denom;
|
---|
| 135 | sum += term;
|
---|
| 136 | rel_error = term/sum;
|
---|
| 137 | } while (rel_error >= cutoff);
|
---|
| 138 |
|
---|
| 139 | grid[T_idx][m] = sum;
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | Taylor_Fjt_Eval::~Taylor_Fm_Eval()
|
---|
| 145 | {
|
---|
| 146 | delete[] T_crit;
|
---|
| 147 | T_crit = NULL;
|
---|
| 148 | free_block(grid);
|
---|
| 149 | grid = NULL;
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | /* Using the tabulated incomplete gamma function in gtable, compute
|
---|
| 153 | * the incomplete gamma function for a particular wval for all 0<=j<=J.
|
---|
| 154 | * The result is placed in the global intermediate int_fjttable.
|
---|
| 155 | */
|
---|
| 156 | double *
|
---|
| 157 | Taylor_Fjt_Eval::compute_Fjt(double T, unsigned int l)
|
---|
| 158 | {
|
---|
| 159 |
|
---|
| 160 | int m;
|
---|
| 161 | unsigned int T_ind;
|
---|
| 162 | double T_crit, two_T, exp_mT, h, F_m, F_mp1;
|
---|
| 163 | double *F_row;
|
---|
| 164 |
|
---|
| 165 | #define STATIC_OO2NP1
|
---|
| 166 | #define STATIC_OON
|
---|
| 167 | #include "static.h"
|
---|
| 168 |
|
---|
| 169 | T_crit = Taylor_Fm_Eval.T_crit[l];
|
---|
| 170 | two_T = 2.0*T;
|
---|
| 171 |
|
---|
| 172 | /*------------------------
|
---|
| 173 | First compute Fl(T) ...
|
---|
| 174 | ------------------------*/
|
---|
| 175 | if (T > T_crit) {
|
---|
| 176 | /*--- Asymptotic formula ---*/
|
---|
| 177 | F[l] = df[2*l]*sqrt(M_PI/2)/pow(two_T,l+0.5);
|
---|
| 178 | }
|
---|
| 179 | else {
|
---|
| 180 | /*--- Taylor interpolation ---*/
|
---|
| 181 | T_ind = floor(0.5+T/Taylor_Fm_Eval.delT);
|
---|
| 182 | h = T_ind*Taylor_Fm_Eval.delT - T;
|
---|
| 183 | F_row = Taylor_Fm_Eval.grid[T_ind] + l;
|
---|
| 184 | F[l] = F_row[0] +
|
---|
| 185 | h*(F_row[1] +
|
---|
| 186 | oon[2]*h*(F_row[2] +
|
---|
| 187 | oon[3]*h*(F_row[3] +
|
---|
| 188 | oon[4]*h*(F_row[4] +
|
---|
| 189 | oon[5]*h*(F_row[5])))));
|
---|
| 190 | }
|
---|
| 191 |
|
---|
| 192 | /*------------------------------------
|
---|
| 193 | And then do downward recursion in m
|
---|
| 194 | ------------------------------------*/
|
---|
| 195 | if (l > 0) {
|
---|
| 196 | F_mp1 = F[l];
|
---|
| 197 | exp_mT = exp(-T);
|
---|
| 198 | for(m=l-1;m>=0;m--) {
|
---|
| 199 | F_m = (exp_mT + two_T*F_mp1)*oo2np1[m];
|
---|
| 200 | F[m] = F_m;
|
---|
| 201 | F_mp1 = F_m;
|
---|
| 202 | }
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | return Fjt_buffer;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 209 |
|
---|
| 210 | // Local Variables:
|
---|
| 211 | // mode: c++
|
---|
| 212 | // c-file-style: "CLJ-CONDENSED"
|
---|
| 213 | // End:
|
---|