| [0b990d] | 1 | //
 | 
|---|
 | 2 | // molshape.cc
 | 
|---|
 | 3 | //
 | 
|---|
 | 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
 | 5 | //
 | 
|---|
 | 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
 | 
|---|
 | 7 | // Maintainer: LPS
 | 
|---|
 | 8 | //
 | 
|---|
 | 9 | // This file is part of the SC Toolkit.
 | 
|---|
 | 10 | //
 | 
|---|
 | 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
 | 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
 | 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
 | 14 | // any later version.
 | 
|---|
 | 15 | //
 | 
|---|
 | 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
 | 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 19 | // GNU Library General Public License for more details.
 | 
|---|
 | 20 | //
 | 
|---|
 | 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
 | 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
 | 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
 | 24 | //
 | 
|---|
 | 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
 | 26 | //
 | 
|---|
 | 27 | 
 | 
|---|
 | 28 | #ifdef __GNUC__
 | 
|---|
 | 29 | #pragma implementation
 | 
|---|
 | 30 | #endif
 | 
|---|
 | 31 | 
 | 
|---|
 | 32 | #include <stdio.h>
 | 
|---|
 | 33 | #include <util/misc/math.h>
 | 
|---|
 | 34 | #include <vector>
 | 
|---|
 | 35 | 
 | 
|---|
 | 36 | #include <util/class/scexception.h>
 | 
|---|
 | 37 | #include <chemistry/molecule/molshape.h>
 | 
|---|
 | 38 | #include <chemistry/molecule/molecule.h>
 | 
|---|
 | 39 | #include <math/scmat/matrix3.h>
 | 
|---|
 | 40 | 
 | 
|---|
 | 41 | using namespace std;
 | 
|---|
 | 42 | using namespace sc;
 | 
|---|
 | 43 | 
 | 
|---|
 | 44 | ////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 45 | // VDWShape
 | 
|---|
 | 46 | 
 | 
|---|
 | 47 | static ClassDesc VDWShape_cd(
 | 
|---|
 | 48 |   typeid(VDWShape),"VDWShape",1,"public UnionShape",
 | 
|---|
 | 49 |   0, create<VDWShape>, 0);
 | 
|---|
 | 50 | 
 | 
|---|
 | 51 | VDWShape::VDWShape(const Ref<Molecule>&mol)
 | 
|---|
 | 52 | {
 | 
|---|
 | 53 |   initialize(mol);
 | 
|---|
 | 54 | }
 | 
|---|
 | 55 | 
 | 
|---|
 | 56 | VDWShape::VDWShape(const Ref<KeyVal>&keyval)
 | 
|---|
 | 57 | {
 | 
|---|
 | 58 |   Ref<Molecule> mol; mol << keyval->describedclassvalue("molecule");
 | 
|---|
 | 59 |   atominfo_ << keyval->describedclassvalue("atominfo");
 | 
|---|
 | 60 |   initialize(mol);
 | 
|---|
 | 61 | }
 | 
|---|
 | 62 | 
 | 
|---|
 | 63 | void
 | 
|---|
 | 64 | VDWShape::initialize(const Ref<Molecule>&mol)
 | 
|---|
 | 65 | {
 | 
|---|
 | 66 |   Ref<AtomInfo> a;
 | 
|---|
 | 67 |   if (atominfo_.null()) a = mol->atominfo();
 | 
|---|
 | 68 |   else a = atominfo_;
 | 
|---|
 | 69 | 
 | 
|---|
 | 70 |   _shapes.clear();
 | 
|---|
 | 71 |   for (int i=0; i<mol->natom(); i++) {
 | 
|---|
 | 72 |       SCVector3 r;
 | 
|---|
 | 73 |       for (int j=0; j<3; j++) r[j] = mol->r(i,j);
 | 
|---|
 | 74 |       add_shape(
 | 
|---|
 | 75 |           new SphereShape(r,a->vdw_radius(mol->Z(i)))
 | 
|---|
 | 76 |           );
 | 
|---|
 | 77 |     }
 | 
|---|
 | 78 | }
 | 
|---|
 | 79 | 
 | 
|---|
 | 80 | VDWShape::~VDWShape()
 | 
|---|
 | 81 | {
 | 
|---|
 | 82 | }
 | 
|---|
 | 83 | 
 | 
|---|
 | 84 | ////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 85 | // static functions for DiscreteConnollyShape and ConnollyShape
 | 
|---|
 | 86 | 
 | 
|---|
 | 87 | static double
 | 
|---|
 | 88 | find_atom_size(const Ref<AtomInfo>& a, int Z)
 | 
|---|
 | 89 | {
 | 
|---|
 | 90 |   return a->vdw_radius(Z);
 | 
|---|
 | 91 | }
 | 
|---|
 | 92 | 
 | 
|---|
 | 93 | ////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 94 | // DiscreteConnollyShape
 | 
|---|
 | 95 | 
 | 
|---|
 | 96 | static ClassDesc DiscreteConnollyShape_cd(
 | 
|---|
 | 97 |   typeid(DiscreteConnollyShape),"DiscreteConnollyShape",1,"public UnionShape",
 | 
|---|
 | 98 |   0, create<DiscreteConnollyShape>, 0);
 | 
|---|
 | 99 | 
 | 
|---|
 | 100 | DiscreteConnollyShape::DiscreteConnollyShape(const Ref<KeyVal>&keyval)
 | 
|---|
 | 101 | {
 | 
|---|
 | 102 |   Ref<Molecule> mol; mol << keyval->describedclassvalue("molecule");
 | 
|---|
 | 103 |   double probe_radius = keyval->doublevalue("probe_radius");
 | 
|---|
 | 104 |   if (keyval->error() != KeyVal::OK) {
 | 
|---|
 | 105 |       probe_radius = 2.6456173;
 | 
|---|
 | 106 |     }
 | 
|---|
 | 107 |   radius_scale_factor_ = keyval->doublevalue("radius_scale_factor");
 | 
|---|
 | 108 |   if (keyval->error() != KeyVal::OK) {
 | 
|---|
 | 109 |       radius_scale_factor_ = 1.2;
 | 
|---|
 | 110 |     }
 | 
|---|
 | 111 |   atominfo_ << keyval->describedclassvalue("atominfo");
 | 
|---|
 | 112 |   initialize(mol,probe_radius);
 | 
|---|
 | 113 | }
 | 
|---|
 | 114 | 
 | 
|---|
 | 115 | void
 | 
|---|
 | 116 | DiscreteConnollyShape::initialize(const Ref<Molecule>&mol,double probe_radius)
 | 
|---|
 | 117 | {
 | 
|---|
 | 118 |   _shapes.clear();
 | 
|---|
 | 119 |   std::vector<Ref<SphereShape> > spheres(0);
 | 
|---|
 | 120 | 
 | 
|---|
 | 121 |   Ref<AtomInfo> a;
 | 
|---|
 | 122 |   if (atominfo_.null()) a = mol->atominfo();
 | 
|---|
 | 123 |   else a = atominfo_;
 | 
|---|
 | 124 | 
 | 
|---|
 | 125 |   int i;
 | 
|---|
 | 126 |   for (i=0; i<mol->natom(); i++) {
 | 
|---|
 | 127 |       SCVector3 r(mol->r(i));
 | 
|---|
 | 128 |       Ref<SphereShape>
 | 
|---|
 | 129 |         sphere(
 | 
|---|
 | 130 |             new SphereShape(r,radius_scale_factor_*find_atom_size(a,
 | 
|---|
 | 131 |                                              mol->Z(i)))
 | 
|---|
 | 132 |             );
 | 
|---|
 | 133 |       add_shape(sphere.pointer());
 | 
|---|
 | 134 |       spheres.push_back(sphere);
 | 
|---|
 | 135 |     }
 | 
|---|
 | 136 | 
 | 
|---|
 | 137 |   ////////////////////// Leave out the other shapes
 | 
|---|
 | 138 |   //return;
 | 
|---|
 | 139 | 
 | 
|---|
 | 140 |   for (i=0; i<spheres.size(); i++) {
 | 
|---|
 | 141 |       for (int j=0; j<i; j++) {
 | 
|---|
 | 142 |           Ref<Shape> th =
 | 
|---|
 | 143 |             UncappedTorusHoleShape::newUncappedTorusHoleShape(probe_radius,
 | 
|---|
 | 144 |                                               *(spheres[i].pointer()),
 | 
|---|
 | 145 |                                               *(spheres[j].pointer()));
 | 
|---|
 | 146 |           if (th.null()) continue;
 | 
|---|
 | 147 |           add_shape(th);
 | 
|---|
 | 148 | 
 | 
|---|
 | 149 |           ////////////////////// Leave out the three sphere shapes
 | 
|---|
 | 150 |           //continue;
 | 
|---|
 | 151 |           
 | 
|---|
 | 152 |           // now check for excluding volume for groups of three spheres
 | 
|---|
 | 153 |           for (int k=0; k<j; k++) {
 | 
|---|
 | 154 |               Ref<Shape> e =
 | 
|---|
 | 155 |                 Uncapped5SphereExclusionShape::
 | 
|---|
 | 156 |               newUncapped5SphereExclusionShape(probe_radius,
 | 
|---|
 | 157 |                                                *(spheres[i].pointer()),
 | 
|---|
 | 158 |                                                *(spheres[j].pointer()),
 | 
|---|
 | 159 |                                                *(spheres[k].pointer()));
 | 
|---|
 | 160 |               if (e.nonnull()) add_shape(e);
 | 
|---|
 | 161 |             }
 | 
|---|
 | 162 |         }
 | 
|---|
 | 163 |     }
 | 
|---|
 | 164 | }
 | 
|---|
 | 165 | 
 | 
|---|
 | 166 | DiscreteConnollyShape::~DiscreteConnollyShape()
 | 
|---|
 | 167 | {
 | 
|---|
 | 168 | }
 | 
|---|
 | 169 | 
 | 
|---|
 | 170 | ////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 171 | // ConnollyShape
 | 
|---|
 | 172 | 
 | 
|---|
 | 173 | static ClassDesc ConnollyShape_cd(
 | 
|---|
 | 174 |   typeid(ConnollyShape),"ConnollyShape",1,"public Shape",
 | 
|---|
 | 175 |   0, create<ConnollyShape>, 0);
 | 
|---|
 | 176 | 
 | 
|---|
 | 177 | ConnollyShape::ConnollyShape(const Ref<KeyVal>&keyval)
 | 
|---|
 | 178 | {
 | 
|---|
 | 179 |   box_ = 0;
 | 
|---|
 | 180 |   sphere = 0;
 | 
|---|
 | 181 |   Ref<Molecule> mol; mol << keyval->describedclassvalue("molecule");
 | 
|---|
 | 182 |   probe_r = keyval->doublevalue("probe_radius");
 | 
|---|
 | 183 |   if (keyval->error() != KeyVal::OK) {
 | 
|---|
 | 184 |       probe_r = 2.6456173;
 | 
|---|
 | 185 |     }
 | 
|---|
 | 186 |   atominfo_ << keyval->describedclassvalue("atominfo");
 | 
|---|
 | 187 |   radius_scale_factor_ = keyval->doublevalue("radius_scale_factor");
 | 
|---|
 | 188 |   if (keyval->error() != KeyVal::OK) {
 | 
|---|
 | 189 |       radius_scale_factor_ = 1.2;
 | 
|---|
 | 190 |     }
 | 
|---|
 | 191 |   initialize(mol,probe_r);
 | 
|---|
 | 192 | }
 | 
|---|
 | 193 | 
 | 
|---|
 | 194 | #if COUNT_CONNOLLY
 | 
|---|
 | 195 | int ConnollyShape::n_total_ = 0;
 | 
|---|
 | 196 | int ConnollyShape::n_inside_vdw_ = 0;
 | 
|---|
 | 197 | int ConnollyShape::n_with_nsphere_[CONNOLLYSHAPE_N_WITH_NSPHERE_DIM];
 | 
|---|
 | 198 | #endif
 | 
|---|
 | 199 | 
 | 
|---|
 | 200 | void
 | 
|---|
 | 201 | ConnollyShape::print_counts(ostream& os)
 | 
|---|
 | 202 | {
 | 
|---|
 | 203 |   os << indent << "ConnollyShape::print_counts():\n" << incindent;
 | 
|---|
 | 204 | #if COUNT_CONNOLLY
 | 
|---|
 | 205 |   os
 | 
|---|
 | 206 |      << indent << "n_total = " << n_total_ << endl
 | 
|---|
 | 207 |      << indent << "n_inside_vdw = " << n_inside_vdw_ << endl;
 | 
|---|
 | 208 |   for (int i=0; i<CONNOLLYSHAPE_N_WITH_NSPHERE_DIM-1; i++) {
 | 
|---|
 | 209 |       os << indent
 | 
|---|
 | 210 |          << scprintf("n with nsphere = %2d: %d\n", i, n_with_nsphere_[i]);
 | 
|---|
 | 211 |     }
 | 
|---|
 | 212 |   os << indent
 | 
|---|
 | 213 |      << scprintf("n with nsphere >= %d: %d\n",
 | 
|---|
 | 214 |                  CONNOLLYSHAPE_N_WITH_NSPHERE_DIM-1,
 | 
|---|
 | 215 |                  n_with_nsphere_[CONNOLLYSHAPE_N_WITH_NSPHERE_DIM-1])
 | 
|---|
 | 216 |      << decindent;
 | 
|---|
 | 217 | #else
 | 
|---|
 | 218 |   os << indent << "No count information is available.\n" << decindent;
 | 
|---|
 | 219 | #endif
 | 
|---|
 | 220 | }
 | 
|---|
 | 221 | 
 | 
|---|
 | 222 | void
 | 
|---|
 | 223 | ConnollyShape::initialize(const Ref<Molecule>&mol,double probe_radius)
 | 
|---|
 | 224 | {
 | 
|---|
 | 225 |   clear();
 | 
|---|
 | 226 | 
 | 
|---|
 | 227 |   n_spheres = mol->natom();
 | 
|---|
 | 228 |   sphere = new CS2Sphere[n_spheres];
 | 
|---|
 | 229 | 
 | 
|---|
 | 230 |   Ref<AtomInfo> a;
 | 
|---|
 | 231 |   if (atominfo_.null()) a = mol->atominfo();
 | 
|---|
 | 232 |   else a = atominfo_;
 | 
|---|
 | 233 | 
 | 
|---|
 | 234 |   int i;
 | 
|---|
 | 235 |   for (i=0; i<n_spheres; i++) {
 | 
|---|
 | 236 |       SCVector3 r(mol->r(i));
 | 
|---|
 | 237 |       sphere[i].initialize(r,radius_scale_factor_*find_atom_size(a,
 | 
|---|
 | 238 |                                             mol->Z(i))
 | 
|---|
 | 239 |                               + probe_r);
 | 
|---|
 | 240 |     }
 | 
|---|
 | 241 | 
 | 
|---|
 | 242 |   // initialize a grid of lists of local spheres
 | 
|---|
 | 243 |   if (n_spheres) {
 | 
|---|
 | 244 |       // find the bounding box
 | 
|---|
 | 245 |       SCVector3 lower(sphere[0].center()), upper(sphere[0].center());
 | 
|---|
 | 246 |       for (i=0; i<n_spheres; i++) {
 | 
|---|
 | 247 |           SCVector3 l(sphere[i].center()), u(sphere[i].center());
 | 
|---|
 | 248 |           for (int j=0; j<3; j++) {
 | 
|---|
 | 249 |               l[j] -= probe_r + sphere[i].radius();
 | 
|---|
 | 250 |               u[j] += probe_r + sphere[i].radius();
 | 
|---|
 | 251 |               if (l[j]<lower[j]) lower[j] = l[j];
 | 
|---|
 | 252 |               if (u[j]>upper[j]) upper[j] = u[j];
 | 
|---|
 | 253 |             }
 | 
|---|
 | 254 |         }
 | 
|---|
 | 255 |       // compute the parameters for converting x, y, z into a box number
 | 
|---|
 | 256 |       lower_ = lower;
 | 
|---|
 | 257 |       l_ = 10.0;
 | 
|---|
 | 258 |       xmax_ = (int)((upper[0]-lower[0])/l_);
 | 
|---|
 | 259 |       ymax_ = (int)((upper[1]-lower[1])/l_);
 | 
|---|
 | 260 |       zmax_ = (int)((upper[2]-lower[2])/l_);
 | 
|---|
 | 261 |       // allocate the boxes
 | 
|---|
 | 262 |       box_ = new std::vector<int>**[xmax_+1];
 | 
|---|
 | 263 |       for (i=0; i<=xmax_; i++) {
 | 
|---|
 | 264 |           box_[i] = new std::vector<int>*[ymax_+1];
 | 
|---|
 | 265 |           for (int j=0; j<=ymax_; j++) {
 | 
|---|
 | 266 |               box_[i][j] = new std::vector<int>[zmax_+1];
 | 
|---|
 | 267 |             }
 | 
|---|
 | 268 |         }
 | 
|---|
 | 269 |       // put the spheres in the boxes
 | 
|---|
 | 270 |       for (i=0; i<n_spheres; i++) {
 | 
|---|
 | 271 |           int ixmin, iymin, izmin, ixmax, iymax, izmax;
 | 
|---|
 | 272 |           SCVector3 l(sphere[i].center()), u(sphere[i].center());
 | 
|---|
 | 273 |           for (int j=0; j<3; j++) {
 | 
|---|
 | 274 |               l[j] -= probe_r + sphere[i].radius();
 | 
|---|
 | 275 |               u[j] += probe_r + sphere[i].radius();
 | 
|---|
 | 276 |             }
 | 
|---|
 | 277 |           get_box(l,ixmin,iymin,izmin);
 | 
|---|
 | 278 |           get_box(u,ixmax,iymax,izmax);
 | 
|---|
 | 279 |           for (int ii=ixmin; ii<=ixmax; ii++) {
 | 
|---|
 | 280 |               for (int jj=iymin; jj<=iymax; jj++) {
 | 
|---|
 | 281 |                   for (int kk=izmin; kk<=izmax; kk++) {
 | 
|---|
 | 282 |                       box_[ii][jj][kk].push_back(i);
 | 
|---|
 | 283 |                     }
 | 
|---|
 | 284 |                 }
 | 
|---|
 | 285 |             }
 | 
|---|
 | 286 |         }
 | 
|---|
 | 287 |     }
 | 
|---|
 | 288 | }
 | 
|---|
 | 289 | 
 | 
|---|
 | 290 | int
 | 
|---|
 | 291 | ConnollyShape::get_box(const SCVector3 &v, int &x, int &y, int &z) const
 | 
|---|
 | 292 | {
 | 
|---|
 | 293 |   if (!box_) return 0;
 | 
|---|
 | 294 |   SCVector3 pos = v-lower_;
 | 
|---|
 | 295 |   x = (int)(pos[0]/l_);
 | 
|---|
 | 296 |   y = (int)(pos[1]/l_);
 | 
|---|
 | 297 |   z = (int)(pos[2]/l_);
 | 
|---|
 | 298 |   if (x<0) x=0;
 | 
|---|
 | 299 |   if (y<0) y=0;
 | 
|---|
 | 300 |   if (z<0) z=0;
 | 
|---|
 | 301 |   if (x>xmax_) x=xmax_;
 | 
|---|
 | 302 |   if (y>ymax_) y=ymax_;
 | 
|---|
 | 303 |   if (z>zmax_) z=zmax_;
 | 
|---|
 | 304 |   return 1;
 | 
|---|
 | 305 | }
 | 
|---|
 | 306 | 
 | 
|---|
 | 307 | ConnollyShape::~ConnollyShape()
 | 
|---|
 | 308 | {
 | 
|---|
 | 309 |   clear();
 | 
|---|
 | 310 | }
 | 
|---|
 | 311 | 
 | 
|---|
 | 312 | void
 | 
|---|
 | 313 | ConnollyShape::clear()
 | 
|---|
 | 314 | {
 | 
|---|
 | 315 |   delete[] sphere;
 | 
|---|
 | 316 |   sphere = 0;
 | 
|---|
 | 317 |   if (box_) {
 | 
|---|
 | 318 |       for (int i=0; i<=xmax_; i++) {
 | 
|---|
 | 319 |           for (int j=0; j<=ymax_; j++) {
 | 
|---|
 | 320 |               delete[] box_[i][j];
 | 
|---|
 | 321 |             }
 | 
|---|
 | 322 |           delete[] box_[i];
 | 
|---|
 | 323 |         }
 | 
|---|
 | 324 |       delete[] box_;
 | 
|---|
 | 325 |       box_ = 0;
 | 
|---|
 | 326 |     }
 | 
|---|
 | 327 | }
 | 
|---|
 | 328 | 
 | 
|---|
 | 329 | double
 | 
|---|
 | 330 | ConnollyShape::distance_to_surface(const SCVector3&r, SCVector3*grad) const
 | 
|---|
 | 331 | {
 | 
|---|
 | 332 | #if COUNT_CONNOLLY
 | 
|---|
 | 333 |   n_total_++;
 | 
|---|
 | 334 | #endif
 | 
|---|
 | 335 |   
 | 
|---|
 | 336 |   // can't compute grad so zero it if it is requested
 | 
|---|
 | 337 |   if (grad) {
 | 
|---|
 | 338 |       *grad = 0.0;
 | 
|---|
 | 339 |     }
 | 
|---|
 | 340 | 
 | 
|---|
 | 341 |   CS2Sphere probe_centers(r,probe_r);
 | 
|---|
 | 342 | 
 | 
|---|
 | 343 |   const int max_local_spheres = 60;
 | 
|---|
 | 344 |   CS2Sphere local_sphere[max_local_spheres];
 | 
|---|
 | 345 | 
 | 
|---|
 | 346 |   const double outside = 1.0;
 | 
|---|
 | 347 |   const double inside = -1.0;
 | 
|---|
 | 348 | 
 | 
|---|
 | 349 |   // find out which spheres are near the probe_centers sphere
 | 
|---|
 | 350 |   int n_local_spheres = 0;
 | 
|---|
 | 351 |   int boxi, boxj, boxk;
 | 
|---|
 | 352 |   if (get_box(r,boxi,boxj,boxk)) {
 | 
|---|
 | 353 |       std::vector<int> & box = box_[boxi][boxj][boxk];
 | 
|---|
 | 354 |       for (int ibox=0; ibox<box.size(); ibox++) {
 | 
|---|
 | 355 |           int i = box[ibox];
 | 
|---|
 | 356 |           double distance = sphere[i].distance(probe_centers);
 | 
|---|
 | 357 |           double r_i = sphere[i].radius();
 | 
|---|
 | 358 |           if (distance < r_i + probe_r) {
 | 
|---|
 | 359 |               if (distance < r_i - probe_r) {
 | 
|---|
 | 360 | #if COUNT_CONNOLLY
 | 
|---|
 | 361 |                   n_inside_vdw_++;
 | 
|---|
 | 362 | #endif
 | 
|---|
 | 363 |                   return inside;
 | 
|---|
 | 364 |                 }
 | 
|---|
 | 365 |               if (n_local_spheres == max_local_spheres) {
 | 
|---|
 | 366 |                   throw LimitExceeded<int>("distance_to_surface: "
 | 
|---|
 | 367 |                                            "max_local_spheres exceeded",
 | 
|---|
 | 368 |                                            __FILE__, __LINE__,
 | 
|---|
 | 369 |                                            max_local_spheres,
 | 
|---|
 | 370 |                                            n_local_spheres+1,
 | 
|---|
 | 371 |                                            class_desc());
 | 
|---|
 | 372 |                 }
 | 
|---|
 | 373 |               local_sphere[n_local_spheres] = sphere[i];
 | 
|---|
 | 374 |               n_local_spheres++;
 | 
|---|
 | 375 |             }
 | 
|---|
 | 376 |         }
 | 
|---|
 | 377 |     }
 | 
|---|
 | 378 | 
 | 
|---|
 | 379 | #if COUNT_CONNOLLY
 | 
|---|
 | 380 |   if (n_local_spheres >= CONNOLLYSHAPE_N_WITH_NSPHERE_DIM) {
 | 
|---|
 | 381 |       n_with_nsphere_[CONNOLLYSHAPE_N_WITH_NSPHERE_DIM-1]++;
 | 
|---|
 | 382 |     }
 | 
|---|
 | 383 |   else {
 | 
|---|
 | 384 |       n_with_nsphere_[n_local_spheres]++;
 | 
|---|
 | 385 |     }
 | 
|---|
 | 386 | #endif
 | 
|---|
 | 387 | 
 | 
|---|
 | 388 |   if (probe_centers.intersect(local_sphere,n_local_spheres)
 | 
|---|
 | 389 |       == 1) return inside;
 | 
|---|
 | 390 |   return outside;
 | 
|---|
 | 391 | }
 | 
|---|
 | 392 | 
 | 
|---|
 | 393 | void
 | 
|---|
 | 394 | ConnollyShape::boundingbox(double valuemin,
 | 
|---|
 | 395 |                             double valuemax,
 | 
|---|
 | 396 |                             SCVector3& p1, SCVector3& p2)
 | 
|---|
 | 397 | {
 | 
|---|
 | 398 |   int i,j;
 | 
|---|
 | 399 |   if (valuemin < -1.0 || valuemax > 1.0) {
 | 
|---|
 | 400 |       throw LimitExceeded<double>("boundingbox: value out of range",
 | 
|---|
 | 401 |                                   __FILE__, __LINE__,
 | 
|---|
 | 402 |                                   ((valuemin<0.0)?-1.0:1.0),
 | 
|---|
 | 403 |                                   valuemin, class_desc());
 | 
|---|
 | 404 |     }
 | 
|---|
 | 405 | 
 | 
|---|
 | 406 |   if (n_spheres == 0) {
 | 
|---|
 | 407 |       for (i=0; i<3; i++) {
 | 
|---|
 | 408 |           p1[i] = 0.0;
 | 
|---|
 | 409 |           p2[i] = 0.0;
 | 
|---|
 | 410 |         }
 | 
|---|
 | 411 |       return;
 | 
|---|
 | 412 |     }
 | 
|---|
 | 413 | 
 | 
|---|
 | 414 |   double r = sphere[0].radius() - probe_r;
 | 
|---|
 | 415 |   SCVector3 v1(sphere[0].x() - r, sphere[0].y() - r, sphere[0].z() - r);
 | 
|---|
 | 416 |   SCVector3 v2(sphere[0].x() + r, sphere[0].y() + r, sphere[0].z() + r);
 | 
|---|
 | 417 | 
 | 
|---|
 | 418 |   for (i=1; i<n_spheres; i++) {
 | 
|---|
 | 419 |       double r = sphere[i].radius() - probe_r;
 | 
|---|
 | 420 |       for (j=0; j<3; j++) {
 | 
|---|
 | 421 |           if (v1[j] > sphere[i].center()[j] - r) {
 | 
|---|
 | 422 |               v1[j] = sphere[i].center()[j] - r;
 | 
|---|
 | 423 |             }
 | 
|---|
 | 424 |           if (v2[j] < sphere[i].center()[j] + r) {
 | 
|---|
 | 425 |               v2[j] = sphere[i].center()[j] + r;
 | 
|---|
 | 426 |             }
 | 
|---|
 | 427 |         }
 | 
|---|
 | 428 |     }
 | 
|---|
 | 429 |   
 | 
|---|
 | 430 |   for (i=0; i<3; i++) {
 | 
|---|
 | 431 |       p1[i] = v1[i] - 0.01;
 | 
|---|
 | 432 |       p2[i] = v2[i] + 0.01;
 | 
|---|
 | 433 |     }
 | 
|---|
 | 434 | }
 | 
|---|
 | 435 | 
 | 
|---|
 | 436 | ////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 437 | // interval class needed by CS2Sphere
 | 
|---|
 | 438 | 
 | 
|---|
 | 439 | // Simple class to keep track of regions along an interval
 | 
|---|
 | 440 | class interval
 | 
|---|
 | 441 | {
 | 
|---|
 | 442 |     int _nsegs;                // # disjoint segments in interval
 | 
|---|
 | 443 |     int _max_segs;              // # segments currently allocated
 | 
|---|
 | 444 | 
 | 
|---|
 | 445 |     double *_min, *_max;        // arrays of ranges for segments
 | 
|---|
 | 446 | 
 | 
|---|
 | 447 |   private:
 | 
|---|
 | 448 |     // internal member function to compact interval list--this 
 | 
|---|
 | 449 |     // assumes that new segment is located in last element of 
 | 
|---|
 | 450 |     // _min and _max
 | 
|---|
 | 451 |     void compact(void)
 | 
|---|
 | 452 |     {
 | 
|---|
 | 453 | 
 | 
|---|
 | 454 |         if (_nsegs==1) return;
 | 
|---|
 | 455 | 
 | 
|---|
 | 456 |         // case 0 new segment is disjoint and below all other segments
 | 
|---|
 | 457 |         if (_max[_nsegs-1] < _min[0]) 
 | 
|---|
 | 458 |         {
 | 
|---|
 | 459 |             double mintmp=_min[_nsegs-1];
 | 
|---|
 | 460 |             double maxtmp=_max[_nsegs-1];
 | 
|---|
 | 461 |             for (int i=_nsegs-2; i>=0 ; i--)
 | 
|---|
 | 462 |             {
 | 
|---|
 | 463 |                 _min[i+1]=_min[i];
 | 
|---|
 | 464 |                 _max[i+1]=_max[i];
 | 
|---|
 | 465 |             }
 | 
|---|
 | 466 |             _min[0]=mintmp;
 | 
|---|
 | 467 |             _max[0]=maxtmp;
 | 
|---|
 | 468 |             return;
 | 
|---|
 | 469 |         }
 | 
|---|
 | 470 | 
 | 
|---|
 | 471 |         // case 1: new segment is disjoint and above all other segments
 | 
|---|
 | 472 |         if (_min[_nsegs-1] > _max[_nsegs-2]) return;
 | 
|---|
 | 473 | 
 | 
|---|
 | 474 |         // Fast forward to where this interval belongs
 | 
|---|
 | 475 |         int icount=0;
 | 
|---|
 | 476 |         while (_min[_nsegs-1] > _max[icount]) icount++;
 | 
|---|
 | 477 | 
 | 
|---|
 | 478 |         // case 2: new segment is disjoint and between two segments
 | 
|---|
 | 479 |         if (_max[_nsegs-1] < _min[icount]) 
 | 
|---|
 | 480 |         {
 | 
|---|
 | 481 |             double mintmp=_min[_nsegs-1];
 | 
|---|
 | 482 |             double maxtmp=_max[_nsegs-1];
 | 
|---|
 | 483 |             for (int i=_nsegs-2; i >= icount; i--)
 | 
|---|
 | 484 |             {
 | 
|---|
 | 485 |                 _min[i+1]=_min[i];
 | 
|---|
 | 486 |                 _max[i+1]=_max[i];
 | 
|---|
 | 487 |             }
 | 
|---|
 | 488 |             _min[icount]=mintmp;
 | 
|---|
 | 489 |             _max[icount]=maxtmp;
 | 
|---|
 | 490 |             return;
 | 
|---|
 | 491 |         }
 | 
|---|
 | 492 | 
 | 
|---|
 | 493 |         // new segment must overlap lower part of segment icount,
 | 
|---|
 | 494 |         // so redefine icount's lower boundary
 | 
|---|
 | 495 |         _min[icount] = (_min[_nsegs-1] < _min[icount])?
 | 
|---|
 | 496 |             _min[_nsegs-1]:_min[icount];
 | 
|---|
 | 497 | 
 | 
|---|
 | 498 |         // Now figure how far up this new segment extends
 | 
|---|
 | 499 |         // case 3: if it doesn't extend beyond this segment, just exit
 | 
|---|
 | 500 |         if (_max[_nsegs-1] < _max[icount]) { _nsegs--; return;}
 | 
|---|
 | 501 | 
 | 
|---|
 | 502 |         // Search forward till we find its end
 | 
|---|
 | 503 |         int jcount=icount;
 | 
|---|
 | 504 |         while (_max[_nsegs-1] > _max[jcount]) jcount++;
 | 
|---|
 | 505 |         
 | 
|---|
 | 506 |         // Case 4
 | 
|---|
 | 507 |         // The new segment goes to the end of all the other segments
 | 
|---|
 | 508 |         if (jcount == _nsegs-1)
 | 
|---|
 | 509 |         {
 | 
|---|
 | 510 |             _max[icount]=_max[_nsegs-1];
 | 
|---|
 | 511 |             _nsegs=icount+1;
 | 
|---|
 | 512 |             return;
 | 
|---|
 | 513 |         }
 | 
|---|
 | 514 | 
 | 
|---|
 | 515 |         // Case 5 
 | 
|---|
 | 516 |         // The new segment ends between segments
 | 
|---|
 | 517 |         if (_max[_nsegs-1] < _min[jcount])
 | 
|---|
 | 518 |         {
 | 
|---|
 | 519 |             _max[icount]=_max[_nsegs-1];
 | 
|---|
 | 520 |             // Now clobber all the segments covered by the new one
 | 
|---|
 | 521 |             int kcount=icount+1;
 | 
|---|
 | 522 |             for (int i=jcount; i<_nsegs; i++)
 | 
|---|
 | 523 |             {
 | 
|---|
 | 524 |                 _min[kcount]=_min[i];
 | 
|---|
 | 525 |                 _max[kcount]=_max[i];
 | 
|---|
 | 526 |                 kcount++;
 | 
|---|
 | 527 |             }
 | 
|---|
 | 528 |             _nsegs=kcount-1;
 | 
|---|
 | 529 |             return;
 | 
|---|
 | 530 |         }
 | 
|---|
 | 531 |         
 | 
|---|
 | 532 |         // Case 6 
 | 
|---|
 | 533 |         // The new segment ends inside a segment
 | 
|---|
 | 534 |         if (_max[_nsegs-1] >= _min[jcount])
 | 
|---|
 | 535 |         {
 | 
|---|
 | 536 |             _max[icount]=_max[jcount];
 | 
|---|
 | 537 |             // Now clobber all the segments covered by the new one
 | 
|---|
 | 538 |             int kcount=icount+1;
 | 
|---|
 | 539 |             for (int i=jcount+1; i<_nsegs; i++)
 | 
|---|
 | 540 |             {
 | 
|---|
 | 541 |                 _min[kcount]=_min[i];
 | 
|---|
 | 542 |                 _max[kcount]=_max[i];
 | 
|---|
 | 543 |                 kcount++;
 | 
|---|
 | 544 |             }
 | 
|---|
 | 545 |             _nsegs=kcount-1;
 | 
|---|
 | 546 |             return;
 | 
|---|
 | 547 |         }
 | 
|---|
 | 548 | 
 | 
|---|
 | 549 |         // Shouldn't get here!
 | 
|---|
 | 550 |         ExEnv::err0() << indent
 | 
|---|
 | 551 |              << "Found no matching cases in interval::compact()\n";
 | 
|---|
 | 552 |         print();
 | 
|---|
 | 553 |         exit(1);
 | 
|---|
 | 554 |     }
 | 
|---|
 | 555 | 
 | 
|---|
 | 556 |   public:
 | 
|---|
 | 557 |     interval(void):_nsegs(0),_max_segs(10) 
 | 
|---|
 | 558 |    { _min = (double*) malloc(_max_segs*sizeof(double));   // Use malloc so
 | 
|---|
 | 559 |       _max = (double*) malloc(_max_segs*sizeof(double));} //we can use realloc
 | 
|---|
 | 560 | 
 | 
|---|
 | 561 |     ~interval() { free(_min); free(_max); }
 | 
|---|
 | 562 |     
 | 
|---|
 | 563 |     // add a new segment to interval
 | 
|---|
 | 564 |     void add(double min, double max)
 | 
|---|
 | 565 |     {
 | 
|---|
 | 566 |         if (min > max) {double tmp=min; min=max; max=tmp;}
 | 
|---|
 | 567 |         if (_nsegs == _max_segs)
 | 
|---|
 | 568 |         {
 | 
|---|
 | 569 |             _max_segs *= 2;
 | 
|---|
 | 570 |             _min=(double *)realloc(_min, _max_segs*sizeof(double));
 | 
|---|
 | 571 |             _max=(double *)realloc(_max, _max_segs*sizeof(double));
 | 
|---|
 | 572 |         }
 | 
|---|
 | 573 |         
 | 
|---|
 | 574 |         _min[_nsegs]=min;
 | 
|---|
 | 575 |         _max[_nsegs]=max;
 | 
|---|
 | 576 |         _nsegs++;
 | 
|---|
 | 577 |         compact();
 | 
|---|
 | 578 |     }
 | 
|---|
 | 579 |     
 | 
|---|
 | 580 |     // Test to see if the interval is complete over {min, max}
 | 
|---|
 | 581 |     int test_interval(double min, double max)
 | 
|---|
 | 582 |     {
 | 
|---|
 | 583 |         if (_nsegs == 0) return 0;
 | 
|---|
 | 584 |   
 | 
|---|
 | 585 |         if (min > max) {double tmp=min; min=max; max=tmp;}
 | 
|---|
 | 586 |         
 | 
|---|
 | 587 |         if (min < _min[0] || max > _max[_nsegs-1]) return 0;
 | 
|---|
 | 588 |         for (int i=0; i < _nsegs; i++)
 | 
|---|
 | 589 |         {
 | 
|---|
 | 590 |             if (min > _min[i] && max < _max[i]) return 1;
 | 
|---|
 | 591 |             if (max < _min[i]) return 0;
 | 
|---|
 | 592 |         }
 | 
|---|
 | 593 |         return 0;
 | 
|---|
 | 594 |     }
 | 
|---|
 | 595 |     
 | 
|---|
 | 596 |     // Print out the currect state of the interval
 | 
|---|
 | 597 |     void print()
 | 
|---|
 | 598 |     {
 | 
|---|
 | 599 |         ExEnv::out0() << indent
 | 
|---|
 | 600 |              << scprintf(" _nsegs=%d; _max_segs=%d\n",_nsegs, _max_segs);
 | 
|---|
 | 601 |         for (int i=0; i<_nsegs; i++)
 | 
|---|
 | 602 |             ExEnv::out0() << indent
 | 
|---|
 | 603 |                  << scprintf("min[%d]=%7.4lf, max[%d]=%7.4lf\n",
 | 
|---|
 | 604 |                              i,_min[i],i,_max[i]); 
 | 
|---|
 | 605 |     }
 | 
|---|
 | 606 | 
 | 
|---|
 | 607 |     void clear() { _nsegs = 0; }
 | 
|---|
 | 608 | };
 | 
|---|
 | 609 | 
 | 
|---|
 | 610 | ////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 611 | // CS2Sphere
 | 
|---|
 | 612 | 
 | 
|---|
 | 613 | #if COUNT_CONNOLLY
 | 
|---|
 | 614 | int CS2Sphere::n_no_spheres_ = 0;
 | 
|---|
 | 615 | int CS2Sphere::n_probe_enclosed_by_a_sphere_ = 0;
 | 
|---|
 | 616 | int CS2Sphere::n_probe_center_not_enclosed_ = 0;
 | 
|---|
 | 617 | int CS2Sphere::n_surface_of_s0_not_covered_ = 0;
 | 
|---|
 | 618 | int CS2Sphere::n_plane_totally_covered_ = 0;
 | 
|---|
 | 619 | int CS2Sphere::n_internal_edge_not_covered_ = 0;
 | 
|---|
 | 620 | int CS2Sphere::n_totally_covered_ = 0;
 | 
|---|
 | 621 | #endif
 | 
|---|
 | 622 | 
 | 
|---|
 | 623 | void
 | 
|---|
 | 624 | CS2Sphere::print_counts(ostream& os)
 | 
|---|
 | 625 | {
 | 
|---|
 | 626 |   os << indent << "CS2Sphere::print_counts():\n" << incindent;
 | 
|---|
 | 627 | #if COUNT_CONNOLLY
 | 
|---|
 | 628 |   os
 | 
|---|
 | 629 |      << indent << "n_no_spheres = " << n_no_spheres_ << endl
 | 
|---|
 | 630 |      << indent << "n_probe_enclosed_by_a_sphere = "
 | 
|---|
 | 631 |                << n_probe_enclosed_by_a_sphere_ << endl
 | 
|---|
 | 632 |      << indent << "n_probe_center_not_enclosed = "
 | 
|---|
 | 633 |                << n_probe_center_not_enclosed_ << endl
 | 
|---|
 | 634 |      << indent << "n_surface_of_s0_not_covered = "
 | 
|---|
 | 635 |                << n_surface_of_s0_not_covered_ << endl
 | 
|---|
 | 636 |      << indent << "n_plane_totally_covered_ = "
 | 
|---|
 | 637 |                << n_plane_totally_covered_ << endl
 | 
|---|
 | 638 |      << indent << "n_internal_edge_not_covered = "
 | 
|---|
 | 639 |                << n_internal_edge_not_covered_ << endl
 | 
|---|
 | 640 |      << indent << "n_totally_covered = " << n_totally_covered_ << endl
 | 
|---|
 | 641 |      << decindent;
 | 
|---|
 | 642 | #else
 | 
|---|
 | 643 |   os << indent << "No count information is available.\n"
 | 
|---|
 | 644 |      << decindent;
 | 
|---|
 | 645 | #endif
 | 
|---|
 | 646 | }
 | 
|---|
 | 647 | 
 | 
|---|
 | 648 | // Function to determine if the centers of a bunch of spheres are separated
 | 
|---|
 | 649 | // by a plane from the center of another plane
 | 
|---|
 | 650 | 
 | 
|---|
 | 651 | // s0 is assumed to be at the origin.
 | 
|---|
 | 652 | 
 | 
|---|
 | 653 | // Return 1 if all of the points can be placed on the same side of a
 | 
|---|
 | 654 | // plane passing through s0's center.
 | 
|---|
 | 655 | static int
 | 
|---|
 | 656 | same_side(const CS2Sphere& s0, CS2Sphere *s, int n_spheres)
 | 
|---|
 | 657 | {
 | 
|---|
 | 658 |   if (n_spheres <= 3) return 1;
 | 
|---|
 | 659 | 
 | 
|---|
 | 660 |   SCVector3 perp;
 | 
|---|
 | 661 |   int sign;
 | 
|---|
 | 662 | 
 | 
|---|
 | 663 |   for (int i=0; i<n_spheres; i++)
 | 
|---|
 | 664 |     {
 | 
|---|
 | 665 |       for (int j=0; j<i; j++)
 | 
|---|
 | 666 |         {
 | 
|---|
 | 667 |           perp = s[i].center().perp_unit(s[j].center());
 | 
|---|
 | 668 |           int old_sign=0;
 | 
|---|
 | 669 |           for (int k=0; k < n_spheres; k++)
 | 
|---|
 | 670 |             {
 | 
|---|
 | 671 |               if (i != k && j != k)
 | 
|---|
 | 672 |                 {
 | 
|---|
 | 673 |                   sign=(perp.dot(s[k].center()) < 0)? -1:1;
 | 
|---|
 | 674 |                   if (old_sign && old_sign != sign)
 | 
|---|
 | 675 |                       goto next_plane;
 | 
|---|
 | 676 |                   old_sign=sign;
 | 
|---|
 | 677 |                 }
 | 
|---|
 | 678 |             }
 | 
|---|
 | 679 |           // We found a  plane with all centers on one side
 | 
|---|
 | 680 |           return 1;
 | 
|---|
 | 681 |           next_plane:
 | 
|---|
 | 682 |           continue;
 | 
|---|
 | 683 |         }
 | 
|---|
 | 684 |     }
 | 
|---|
 | 685 |   // All of the planes had points on both sides.
 | 
|---|
 | 686 |   return 0;
 | 
|---|
 | 687 | }
 | 
|---|
 | 688 | 
 | 
|---|
 | 689 | double
 | 
|---|
 | 690 | CS2Sphere::common_radius(CS2Sphere &asphere)
 | 
|---|
 | 691 | {
 | 
|---|
 | 692 |   double d=distance(asphere);
 | 
|---|
 | 693 |   double s=0.5*(d+_radius+asphere._radius);
 | 
|---|
 | 694 |   double p = s*(s-d)*(s-_radius)*(s-asphere._radius);
 | 
|---|
 | 695 |   //printf("common_radius: p = %5.3f\n", p);
 | 
|---|
 | 696 |   if (p <= 0.0) return 0.0;
 | 
|---|
 | 697 |   return 2.*sqrt(p)/d;
 | 
|---|
 | 698 | }
 | 
|---|
 | 699 | 
 | 
|---|
 | 700 | #define PRINT_SPECIAL_CASES 0
 | 
|---|
 | 701 | #if PRINT_SPECIAL_CASES
 | 
|---|
 | 702 | static void
 | 
|---|
 | 703 | print_spheres(const CS2Sphere& s0, CS2Sphere* s, int n_spheres)
 | 
|---|
 | 704 | {
 | 
|---|
 | 705 |   static int output_number;
 | 
|---|
 | 706 |   char filename[80];
 | 
|---|
 | 707 |   sprintf(filename,"spherelist_%d.oogl",output_number);
 | 
|---|
 | 708 |   FILE* fp = fopen(filename,"w");
 | 
|---|
 | 709 |   fprintf(fp,"LIST\n");
 | 
|---|
 | 710 |   fprintf(fp,"{\n");
 | 
|---|
 | 711 |   fprintf(fp,"  appearance {\n");
 | 
|---|
 | 712 |   fprintf(fp,"      material {\n");
 | 
|---|
 | 713 |   fprintf(fp,"         ambient 0.5 0.1 0.1\n");
 | 
|---|
 | 714 |   fprintf(fp,"         diffuse 1.0 0.2 0.2\n");
 | 
|---|
 | 715 |   fprintf(fp,"       }\n");
 | 
|---|
 | 716 |   fprintf(fp,"    }\n");
 | 
|---|
 | 717 |   fprintf(fp," = SPHERE\n");
 | 
|---|
 | 718 |   fprintf(fp," %15.8f %15.8f %15.8f %15.8f\n",
 | 
|---|
 | 719 |           s0.radius(), s0.x(), s0.y(), s0.z());
 | 
|---|
 | 720 |   fprintf(fp,"}\n");
 | 
|---|
 | 721 |   for (int i=0; i<n_spheres; i++) {
 | 
|---|
 | 722 |       fprintf(fp,"{ = SPHERE\n");
 | 
|---|
 | 723 |       fprintf(fp," %15.8f %15.8f %15.8f %15.8f\n",
 | 
|---|
 | 724 |               s[i].radius(), s[i].x(), s[i].y(), s[i].z());
 | 
|---|
 | 725 |       fprintf(fp,"}\n");
 | 
|---|
 | 726 |     }
 | 
|---|
 | 727 |   fclose(fp);
 | 
|---|
 | 728 |   output_number++;
 | 
|---|
 | 729 | }
 | 
|---|
 | 730 | #endif
 | 
|---|
 | 731 | 
 | 
|---|
 | 732 | // Function to determine if there is any portion of s0 that 
 | 
|---|
 | 733 | // is not inside one or more of the spheres in s[]
 | 
|---|
 | 734 | int
 | 
|---|
 | 735 | CS2Sphere::intersect(CS2Sphere *s, int n_spheres) const
 | 
|---|
 | 736 | {
 | 
|---|
 | 737 |     if (n_spheres == 0) {
 | 
|---|
 | 738 |         n_no_spheres_++;
 | 
|---|
 | 739 |         return 0;
 | 
|---|
 | 740 |       }
 | 
|---|
 | 741 |     CS2Sphere s0;
 | 
|---|
 | 742 |     s0 = *this;
 | 
|---|
 | 743 |     // Declare an interval object to manage overlap information
 | 
|---|
 | 744 |     // it is static so it will only call malloc twice
 | 
|---|
 | 745 |     static interval intvl;
 | 
|---|
 | 746 |     // First make sure that at least one sphere in s[] contains
 | 
|---|
 | 747 |     // the center of s0 and that s0 is not contained inside
 | 
|---|
 | 748 |     // one of the spheres
 | 
|---|
 | 749 |     int center_is_contained = 0;
 | 
|---|
 | 750 |     int i;
 | 
|---|
 | 751 |     for (i=0; i<n_spheres; i++)
 | 
|---|
 | 752 |     {
 | 
|---|
 | 753 |         double d=s0.distance(s[i]);
 | 
|---|
 | 754 |         if (d+s0.radius() < s[i].radius()) {
 | 
|---|
 | 755 |             n_probe_enclosed_by_a_sphere_++;
 | 
|---|
 | 756 |             return 1;
 | 
|---|
 | 757 |           }
 | 
|---|
 | 758 |         if (d < s[i].radius()) center_is_contained = 1;
 | 
|---|
 | 759 |     }
 | 
|---|
 | 760 |     if (!center_is_contained) {
 | 
|---|
 | 761 |         n_probe_center_not_enclosed_++;
 | 
|---|
 | 762 |         return 0;
 | 
|---|
 | 763 |       }
 | 
|---|
 | 764 |     
 | 
|---|
 | 765 |     // Let's first put s0 at the origin
 | 
|---|
 | 766 |     for (i=0; i<n_spheres; i++)
 | 
|---|
 | 767 |         s[i].recenter(s0.center());
 | 
|---|
 | 768 |     s0.recenter(s0.center());
 | 
|---|
 | 769 |             
 | 
|---|
 | 770 |     // Now check to make sure that the surface of s0 is completely
 | 
|---|
 | 771 |     // included in spheres in s[], by making sure that all the
 | 
|---|
 | 772 |     // circles describing the intersections of every sphere with
 | 
|---|
 | 773 |     // s0 are included in at least one other sphere.
 | 
|---|
 | 774 |     double epsilon=1.e-8;
 | 
|---|
 | 775 |     for (i=0; i<n_spheres; i++)
 | 
|---|
 | 776 |     {
 | 
|---|
 | 777 |         // calculate radius of the intersection of s0 and s[i]
 | 
|---|
 | 778 |         double cr = s0.common_radius(s[i]);
 | 
|---|
 | 779 |         if (cr == 0.0) {
 | 
|---|
 | 780 |             continue;
 | 
|---|
 | 781 |         }
 | 
|---|
 | 782 |         
 | 
|---|
 | 783 |         // We're chosing that the intersection of s[i] and s0 
 | 
|---|
 | 784 |         // occurs parallel to the x-y plane, so we'll need to rotate the
 | 
|---|
 | 785 |         // center of s[j] appropriately.  
 | 
|---|
 | 786 |         // Create a rotation matrix that take the vector from 
 | 
|---|
 | 787 |         // the centers of s0 to s[i] and puts it on the z axis
 | 
|---|
 | 788 |         static const SCVector3 Zaxis(0.0, 0.0, 1.0);
 | 
|---|
 | 789 |         SCMatrix3 rot = rotation_mat(s0.center_vec(s[i]),Zaxis);
 | 
|---|
 | 790 |         
 | 
|---|
 | 791 |         // Now calculate the Z position of the intersection of 
 | 
|---|
 | 792 |         // s0 and s[i]
 | 
|---|
 | 793 |         double d=s0.distance(s[i]);
 | 
|---|
 | 794 |         double z_plane;
 | 
|---|
 | 795 |         if (s[i].radius()*s[i].radius() < d*d+s0.radius()*s0.radius())
 | 
|---|
 | 796 |             z_plane=sqrt(s0.radius()*s0.radius()-cr*cr);
 | 
|---|
 | 797 |         else
 | 
|---|
 | 798 |             z_plane=-sqrt(s0.radius()*s0.radius()-cr*cr);
 | 
|---|
 | 799 |         
 | 
|---|
 | 800 |         // Initialize the interval object
 | 
|---|
 | 801 |         intvl.clear();
 | 
|---|
 | 802 |         
 | 
|---|
 | 803 |         // Loop over the other spheres
 | 
|---|
 | 804 |         for (int j=0; j<n_spheres; j++)
 | 
|---|
 | 805 |             if (i != j)
 | 
|---|
 | 806 |             {
 | 
|---|
 | 807 |                 // Rotate the center of s[j] to appropriate refence frame
 | 
|---|
 | 808 |                 SCVector3 rcent = rot*s0.center_vec(s[j]);
 | 
|---|
 | 809 |                 
 | 
|---|
 | 810 |                 double x0=rcent.x();
 | 
|---|
 | 811 |                 double y0=rcent.y();
 | 
|---|
 | 812 |                 double z0=rcent.z();
 | 
|---|
 | 813 |                 
 | 
|---|
 | 814 |                 // Does this sphere even reach the plane where
 | 
|---|
 | 815 |                 // the intersection of s0 and s[i] occurs?
 | 
|---|
 | 816 |                 // If not, let's go to the next sphere
 | 
|---|
 | 817 |                 double z_dist=s[j].radius()*s[j].radius()-
 | 
|---|
 | 818 |                     (z0-z_plane)*(z0-z_plane);
 | 
|---|
 | 819 |                 if (z_dist < 0.0)
 | 
|---|
 | 820 |                     continue;
 | 
|---|
 | 821 |                 
 | 
|---|
 | 822 |                 // Calculate radius of circular projection of s[j]
 | 
|---|
 | 823 |                 // onto s0-s[i] intersection plane
 | 
|---|
 | 824 |                 double r_2=z_dist;
 | 
|---|
 | 825 |                 
 | 
|---|
 | 826 |                 // Precalculate a bunch of factors 
 | 
|---|
 | 827 |                 double cr_2=cr*cr;
 | 
|---|
 | 828 |                 double x0_2=x0*x0; double y0_2=y0*y0;
 | 
|---|
 | 829 |                 double dist=sqrt(x0_2+y0_2);
 | 
|---|
 | 830 |                 
 | 
|---|
 | 831 |                 // If the projection of s[j] on x-y doesn't reach the
 | 
|---|
 | 832 |                 // intersection of s[i] and s0, continue.
 | 
|---|
 | 833 |                 if (r_2 < (dist-cr)*(dist-cr))
 | 
|---|
 | 834 |                     continue;
 | 
|---|
 | 835 |                 
 | 
|---|
 | 836 |                 // If the projection of s[j] on x-y engulfs the intersection
 | 
|---|
 | 837 |                 // of s[i] and s0, cover interval and continue
 | 
|---|
 | 838 |                 if (r_2 > (dist+cr)*(dist+cr))
 | 
|---|
 | 839 |                 {
 | 
|---|
 | 840 |                     intvl.add(0, 2.*M_PI);
 | 
|---|
 | 841 |                     continue;
 | 
|---|
 | 842 |                 }
 | 
|---|
 | 843 |                 
 | 
|---|
 | 844 |                 // Calculation the radical in the quadratic equation
 | 
|---|
 | 845 |                 // determining the overlap of the two circles
 | 
|---|
 | 846 |                 double radical=x0_2*(-cr_2*cr_2 + 2*cr_2*r_2 - 
 | 
|---|
 | 847 |                                      r_2*r_2 + 2*cr_2*x0_2 + 
 | 
|---|
 | 848 |                                      2*r_2*x0_2 - x0_2*x0_2 + 
 | 
|---|
 | 849 |                                      2*cr_2*y0_2 + 2*r_2*y0_2 - 
 | 
|---|
 | 850 |                                      2*x0_2*y0_2 - y0_2*y0_2);
 | 
|---|
 | 851 |                 
 | 
|---|
 | 852 |                 // Check to see if there's any intersection at all
 | 
|---|
 | 853 |                 // I.e. if one circle is inside the other  (Note that
 | 
|---|
 | 854 |                 // we've already checked to see if s[j] engulfs
 | 
|---|
 | 855 |                 // the intersection of s0 and s[i])
 | 
|---|
 | 856 |                 if (radical <= 0.0) continue;
 | 
|---|
 | 857 |                 
 | 
|---|
 | 858 |                 // Okay, go ahead and calculate the intersection points
 | 
|---|
 | 859 |                 double x_numer = cr_2*x0_2 - r_2*x0_2 + x0_2*x0_2 + x0_2*y0_2;
 | 
|---|
 | 860 |                 double x_denom = 2*x0*x0_2 + 2*x0*y0_2;
 | 
|---|
 | 861 |                 double y_numer = cr_2*y0 - r_2*y0 + x0_2*y0 + y0*y0_2;
 | 
|---|
 | 862 |                 double y_denom = 2*(x0_2 + y0_2);
 | 
|---|
 | 863 |                 
 | 
|---|
 | 864 |                 double sqrt_radical = sqrt(radical);
 | 
|---|
 | 865 |                 
 | 
|---|
 | 866 |                 double x_0=(x_numer - y0*sqrt_radical)/x_denom;
 | 
|---|
 | 867 |                 double y_0=(y_numer + sqrt_radical)/y_denom;
 | 
|---|
 | 868 |                 double x_1=(x_numer + y0*sqrt_radical)/x_denom;
 | 
|---|
 | 869 |                 double y_1=(y_numer - sqrt_radical)/y_denom;
 | 
|---|
 | 870 |                 
 | 
|---|
 | 871 |                 // Now calculate the angular range of these ordered
 | 
|---|
 | 872 |                 // points and place them on the first Riemann sheet.
 | 
|---|
 | 873 |                 // and sort their order
 | 
|---|
 | 874 |                 double theta1=atan2(y_0, x_0);
 | 
|---|
 | 875 |                 double theta2=atan2(y_1, x_1);
 | 
|---|
 | 876 |                 if (theta1 < 0.0) theta1+=2.*M_PI;
 | 
|---|
 | 877 |                 if (theta2 < 0.0) theta2+=2.*M_PI;
 | 
|---|
 | 878 |                 if (theta1 > theta2)
 | 
|---|
 | 879 |                 {
 | 
|---|
 | 880 |                     double tmptheta=theta1;
 | 
|---|
 | 881 |                     theta1=theta2;
 | 
|---|
 | 882 |                     theta2=tmptheta;
 | 
|---|
 | 883 |                 }
 | 
|---|
 | 884 |                 
 | 
|---|
 | 885 |                 // Determine which of the two possible chords 
 | 
|---|
 | 886 |                 // is inside s[j]
 | 
|---|
 | 887 |                 double dor=(x0-cr)*(x0-cr)+y0*y0;
 | 
|---|
 | 888 |                 if (dor < r_2)
 | 
|---|
 | 889 |                 {
 | 
|---|
 | 890 |                     intvl.add(0, theta1);
 | 
|---|
 | 891 |                     intvl.add(theta2, 2.*M_PI);
 | 
|---|
 | 892 |                 }
 | 
|---|
 | 893 |                 else            
 | 
|---|
 | 894 |                 {
 | 
|---|
 | 895 |                     intvl.add(theta1, theta2);
 | 
|---|
 | 896 |                 }
 | 
|---|
 | 897 |                 
 | 
|---|
 | 898 |                 // Now test to see if the range is covered
 | 
|---|
 | 899 |                 if (intvl.test_interval(epsilon, 2.*M_PI-epsilon))
 | 
|---|
 | 900 |                 {
 | 
|---|
 | 901 |                     // No need to keep testing, move on to next i
 | 
|---|
 | 902 |                     break;
 | 
|---|
 | 903 |                 }
 | 
|---|
 | 904 |                 
 | 
|---|
 | 905 |             }
 | 
|---|
 | 906 |         // If the intersection wasn't totally covered, the sphere
 | 
|---|
 | 907 |         // intersection is incomplete
 | 
|---|
 | 908 |         if (!intvl.test_interval(epsilon, 2.*M_PI-epsilon)) {
 | 
|---|
 | 909 |             n_surface_of_s0_not_covered_++;
 | 
|---|
 | 910 |             // goto next_test;
 | 
|---|
 | 911 |             return 0;
 | 
|---|
 | 912 |         }
 | 
|---|
 | 913 |     }
 | 
|---|
 | 914 | 
 | 
|---|
 | 915 |     // for the special case of all sphere's centers on one side of
 | 
|---|
 | 916 |     // a plane passing through s0's center we are done; the probe
 | 
|---|
 | 917 |     // must be completely intersected.
 | 
|---|
 | 918 |     if (same_side(s0,s,n_spheres)) {
 | 
|---|
 | 919 |         n_plane_totally_covered_++;
 | 
|---|
 | 920 |         return 1;
 | 
|---|
 | 921 |       }
 | 
|---|
 | 922 |     
 | 
|---|
 | 923 |     // As a final test of the surface coverage, make sure that all
 | 
|---|
 | 924 |     // of the intersection surfaces between s0 and s[] are included 
 | 
|---|
 | 925 |     // inside more than one sphere.
 | 
|---|
 | 926 |     int angle_segs;
 | 
|---|
 | 927 |     double max_angle[2], min_angle[2];
 | 
|---|
 | 928 |     for (i=0; i<n_spheres; i++)
 | 
|---|
 | 929 |     {
 | 
|---|
 | 930 |         // For my own sanity, let's put s[i] at the origin 
 | 
|---|
 | 931 |         int k;
 | 
|---|
 | 932 |         for (k=0; k<n_spheres; k++)
 | 
|---|
 | 933 |             if (k != i)
 | 
|---|
 | 934 |                 s[k].recenter(s[i].center());
 | 
|---|
 | 935 |         s0.recenter(s[i].center());
 | 
|---|
 | 936 |         s[i].recenter(s[i].center());
 | 
|---|
 | 937 |         
 | 
|---|
 | 938 |         for (int j=0; j<i; j++)
 | 
|---|
 | 939 |         {
 | 
|---|
 | 940 | 
 | 
|---|
 | 941 |             // calculate radius of the intersection of s[i] and s[j]
 | 
|---|
 | 942 |             double cr = s[i].common_radius(s[j]);
 | 
|---|
 | 943 |             if (cr == 0.0) {
 | 
|---|
 | 944 |                 continue;                   // s[i] and s[j] don't intersect
 | 
|---|
 | 945 |             }
 | 
|---|
 | 946 | 
 | 
|---|
 | 947 |             // We're chosing that the intersection of s[i] and s[j]
 | 
|---|
 | 948 |             // occurs parallel to the x-y plane, so we'll need to rotate the
 | 
|---|
 | 949 |             // center of all s[]'s and s0 appropriately.  
 | 
|---|
 | 950 |             // Create a rotation matrix that take the vector from 
 | 
|---|
 | 951 |             // the centers of s0 to s[i] and puts it on the z axis
 | 
|---|
 | 952 |             static const SCVector3 Zaxis(0.0, 0.0, 1.0);
 | 
|---|
 | 953 |             SCMatrix3 rot = rotation_mat(s[i].center_vec(s[j]),Zaxis);
 | 
|---|
 | 954 |             
 | 
|---|
 | 955 |             // Now calculate the Z position of the intersection of 
 | 
|---|
 | 956 |             // s[i] and s[j]
 | 
|---|
 | 957 |             double d=s[i].distance(s[j]);
 | 
|---|
 | 958 |             double z_plane;
 | 
|---|
 | 959 |             if (s[j].radius()*s[j].radius() < s[i].radius()*s[i].radius()+d*d)
 | 
|---|
 | 960 |                 z_plane=sqrt(s[i].radius()*s[i].radius()-cr*cr);
 | 
|---|
 | 961 |             else
 | 
|---|
 | 962 |                 z_plane=-sqrt(s[i].radius()*s[i].radius()-cr*cr);
 | 
|---|
 | 963 |             
 | 
|---|
 | 964 |             // Determine which part of the this intersection
 | 
|---|
 | 965 |             // occurs within s0
 | 
|---|
 | 966 |             // Rotate the center of s0 to appropriate refence frame
 | 
|---|
 | 967 |             SCVector3 rcent = rot*s[i].center_vec(s0);
 | 
|---|
 | 968 |             
 | 
|---|
 | 969 |             double x0=rcent.x();
 | 
|---|
 | 970 |             double y0=rcent.y();
 | 
|---|
 | 971 |             double z0=rcent.z();
 | 
|---|
 | 972 |             
 | 
|---|
 | 973 |             // Does this s0 even reach the plane where
 | 
|---|
 | 974 |             // the intersection of s[i] and s[j] occurs?
 | 
|---|
 | 975 |             // If not, let's go to the next sphere j
 | 
|---|
 | 976 |             double z_dist=s0.radius()*s0.radius()-
 | 
|---|
 | 977 |                 (z0-z_plane)*(z0-z_plane);
 | 
|---|
 | 978 |             if (z_dist < 0.0)
 | 
|---|
 | 979 |                 continue;
 | 
|---|
 | 980 |             
 | 
|---|
 | 981 |             // Calculate radius of circular projection of s0
 | 
|---|
 | 982 |             // onto s[i]-s[j] intersection plane
 | 
|---|
 | 983 |             double r_2=z_dist;
 | 
|---|
 | 984 |             
 | 
|---|
 | 985 |             // Precalculate a bunch of factors 
 | 
|---|
 | 986 |             double cr_2=cr*cr;
 | 
|---|
 | 987 |             double x0_2=x0*x0; double y0_2=y0*y0;
 | 
|---|
 | 988 |             double dist=sqrt(x0_2+y0_2);
 | 
|---|
 | 989 |             
 | 
|---|
 | 990 |             // If the projection of s[j] on x-y doesn't reach the
 | 
|---|
 | 991 |             // intersection of s[i] and s0, continue.
 | 
|---|
 | 992 |             if (r_2 < (dist-cr)*(dist-cr))
 | 
|---|
 | 993 |                 continue;
 | 
|---|
 | 994 |             
 | 
|---|
 | 995 |             // If the projection of s0 on x-y engulfs the intersection
 | 
|---|
 | 996 |             // of s[i] and s[j], the intersection interval is 0 to 2pi
 | 
|---|
 | 997 |             if (r_2 > (dist+cr)*(dist+cr))
 | 
|---|
 | 998 |             {
 | 
|---|
 | 999 |                 angle_segs=1;
 | 
|---|
 | 1000 |                 min_angle[0]=0.0;
 | 
|---|
 | 1001 |                 max_angle[0]=2.*M_PI;
 | 
|---|
 | 1002 |             }
 | 
|---|
 | 1003 |             
 | 
|---|
 | 1004 |             // Calculation the radical in the quadratic equation
 | 
|---|
 | 1005 |             // determining the overlap of the two circles
 | 
|---|
 | 1006 |             double radical=x0_2*(-cr_2*cr_2 + 2*cr_2*r_2 - 
 | 
|---|
 | 1007 |                                  r_2*r_2 + 2*cr_2*x0_2 + 
 | 
|---|
 | 1008 |                                  2*r_2*x0_2 - x0_2*x0_2 + 
 | 
|---|
 | 1009 |                                  2*cr_2*y0_2 + 2*r_2*y0_2 - 
 | 
|---|
 | 1010 |                                  2*x0_2*y0_2 - y0_2*y0_2);
 | 
|---|
 | 1011 |             
 | 
|---|
 | 1012 |             // Check to see if there's any intersection at all
 | 
|---|
 | 1013 |             // I.e. if one circle is inside the other  (Note that
 | 
|---|
 | 1014 |             // we've already checked to see if s0 engulfs
 | 
|---|
 | 1015 |             // the intersection of s[i] and s[j]), so this
 | 
|---|
 | 1016 |             // must mean that the intersection of s[i] and s[j]
 | 
|---|
 | 1017 |             // occurs outside s0
 | 
|---|
 | 1018 |             if (radical <= 0.0) continue;
 | 
|---|
 | 1019 | 
 | 
|---|
 | 1020 |             // Okay, go ahead and calculate the intersection points
 | 
|---|
 | 1021 |             double x_numer = cr_2*x0_2 - r_2*x0_2 + x0_2*x0_2 + x0_2*y0_2;
 | 
|---|
 | 1022 |             double x_denom = 2*x0*x0_2 + 2*x0*y0_2;
 | 
|---|
 | 1023 |             double y_numer = cr_2*y0 - r_2*y0 + x0_2*y0 + y0*y0_2;
 | 
|---|
 | 1024 |             double y_denom = 2*(x0_2 + y0_2);
 | 
|---|
 | 1025 |             
 | 
|---|
 | 1026 |             double sqrt_radical = sqrt(radical);
 | 
|---|
 | 1027 |             
 | 
|---|
 | 1028 |             double x_0=(x_numer - y0*sqrt_radical)/x_denom;
 | 
|---|
 | 1029 |             double y_0=(y_numer + sqrt_radical)/y_denom;
 | 
|---|
 | 1030 |             double x_1=(x_numer + y0*sqrt_radical)/x_denom;
 | 
|---|
 | 1031 |             double y_1=(y_numer - sqrt_radical)/y_denom;
 | 
|---|
 | 1032 |             
 | 
|---|
 | 1033 |             // Now calculate the angular range of these ordered
 | 
|---|
 | 1034 |             // points and place them on the first Riemann sheet.
 | 
|---|
 | 1035 |             // and sort their order
 | 
|---|
 | 1036 |             double theta1=atan2(y_0, x_0);
 | 
|---|
 | 1037 |             double theta2=atan2(y_1, x_1);
 | 
|---|
 | 1038 |             if (theta1 < 0.0) theta1+=2.*M_PI;
 | 
|---|
 | 1039 |             if (theta2 < 0.0) theta2+=2.*M_PI;
 | 
|---|
 | 1040 |             if (theta1 > theta2)
 | 
|---|
 | 1041 |             {
 | 
|---|
 | 1042 |                 double tmptheta=theta1;
 | 
|---|
 | 1043 |                 theta1=theta2;
 | 
|---|
 | 1044 |                 theta2=tmptheta;
 | 
|---|
 | 1045 |             }
 | 
|---|
 | 1046 |             //printf("theta1=%lf, theta2=%lf\n",theta1,theta2);
 | 
|---|
 | 1047 | 
 | 
|---|
 | 1048 |             // Determine which of the two possible chords 
 | 
|---|
 | 1049 |             // is inside s0
 | 
|---|
 | 1050 | 
 | 
|---|
 | 1051 |             // But first see if s0 is inside this intersection:
 | 
|---|
 | 1052 |             double origin_dist=((x0-cr)*(x0-cr)+(y0*y0));
 | 
|---|
 | 1053 |             if (origin_dist < r_2) // it's the angle containing
 | 
|---|
 | 1054 |                                        // the origin
 | 
|---|
 | 1055 |             {
 | 
|---|
 | 1056 |                 angle_segs=2;
 | 
|---|
 | 1057 |                 min_angle[0]=0.0;
 | 
|---|
 | 1058 |                 max_angle[0]=theta1;
 | 
|---|
 | 1059 |                 min_angle[1]=theta2;
 | 
|---|
 | 1060 |                 max_angle[1]=2.*M_PI;
 | 
|---|
 | 1061 |             }
 | 
|---|
 | 1062 |             else            // it's the angle not including the origin
 | 
|---|
 | 1063 |             {
 | 
|---|
 | 1064 |                 angle_segs=1;
 | 
|---|
 | 1065 |                 min_angle[0]=theta1;
 | 
|---|
 | 1066 |                 max_angle[0]=theta2;
 | 
|---|
 | 1067 |             }
 | 
|---|
 | 1068 |             
 | 
|---|
 | 1069 |             // Initialize the interval object
 | 
|---|
 | 1070 |             intvl.clear();
 | 
|---|
 | 1071 |             
 | 
|---|
 | 1072 |             // Loop over the other spheres
 | 
|---|
 | 1073 |             for (k=0; k<n_spheres; k++)
 | 
|---|
 | 1074 |             {
 | 
|---|
 | 1075 |                 if (k != i && k != j)
 | 
|---|
 | 1076 |                 {
 | 
|---|
 | 1077 |                     // Rotate the center of s[k] to appropriate reference frame
 | 
|---|
 | 1078 |                     rcent = rot*s[i].center_vec(s[k]);
 | 
|---|
 | 1079 |                     
 | 
|---|
 | 1080 |                     double x0=rcent.x();
 | 
|---|
 | 1081 |                     double y0=rcent.y();
 | 
|---|
 | 1082 |                     double z0=rcent.z();
 | 
|---|
 | 1083 |                     
 | 
|---|
 | 1084 |                     // Does this sphere even reach the plane where
 | 
|---|
 | 1085 |                     // the intersection of s[i] and s[j] occurs?
 | 
|---|
 | 1086 |                     // If not, let's go to the next sphere
 | 
|---|
 | 1087 |                     double z_dist=s[k].radius()*s[k].radius()-
 | 
|---|
 | 1088 |                         (z0-z_plane)*(z0-z_plane);
 | 
|---|
 | 1089 |                     if (z_dist < 0.0)
 | 
|---|
 | 1090 |                         continue;
 | 
|---|
 | 1091 |                     
 | 
|---|
 | 1092 |                     // Calculate radius of circular projection of s[k]
 | 
|---|
 | 1093 |                     // onto s[i]-s[j] intersection plane
 | 
|---|
 | 1094 |                     double r_2=z_dist;
 | 
|---|
 | 1095 |                     
 | 
|---|
 | 1096 |                     // Precalculate a bunch of factors 
 | 
|---|
 | 1097 |                     double cr_2=cr*cr;
 | 
|---|
 | 1098 |                     double x0_2=x0*x0; double y0_2=y0*y0;
 | 
|---|
 | 1099 |                     double dist=sqrt(x0_2+y0_2);
 | 
|---|
 | 1100 |                     
 | 
|---|
 | 1101 |                     // If the projection of s[k] on x-y doesn't reach the
 | 
|---|
 | 1102 |                     // intersection of s[i] and s[j], continue.
 | 
|---|
 | 1103 |                     if (r_2 < (dist-cr)*(dist-cr))
 | 
|---|
 | 1104 |                         continue;
 | 
|---|
 | 1105 |                     
 | 
|---|
 | 1106 |                     // If the projection of s[k] on x-y engulfs the intersection
 | 
|---|
 | 1107 |                     // of s[i] and s0, cover interval and continue
 | 
|---|
 | 1108 |                     if (r_2 > (dist+cr)*(dist+cr))
 | 
|---|
 | 1109 |                     {
 | 
|---|
 | 1110 |                         intvl.add(0, 2.*M_PI);
 | 
|---|
 | 1111 |                         continue;
 | 
|---|
 | 1112 |                     }
 | 
|---|
 | 1113 |                     
 | 
|---|
 | 1114 |                     // Calculation the radical in the quadratic equation
 | 
|---|
 | 1115 |                     // determining the overlap of the two circles
 | 
|---|
 | 1116 |                     radical=x0_2*(-cr_2*cr_2 + 2*cr_2*r_2 - 
 | 
|---|
 | 1117 |                                   r_2*r_2 + 2*cr_2*x0_2 + 
 | 
|---|
 | 1118 |                                   2*r_2*x0_2 - x0_2*x0_2 + 
 | 
|---|
 | 1119 |                                   2*cr_2*y0_2 + 2*r_2*y0_2 - 
 | 
|---|
 | 1120 |                                   2*x0_2*y0_2 - y0_2*y0_2);
 | 
|---|
 | 1121 |                     
 | 
|---|
 | 1122 |                     // Check to see if there's any intersection at all
 | 
|---|
 | 1123 |                     // I.e. if one circle is inside the other  (Note that
 | 
|---|
 | 1124 |                     // we've already checked to see if s[k] engulfs
 | 
|---|
 | 1125 |                     // the intersection of s[i] and s[j])
 | 
|---|
 | 1126 |                     if (radical <= 0.0) continue;
 | 
|---|
 | 1127 |                     
 | 
|---|
 | 1128 |                     // Okay, go ahead and calculate the intersection points
 | 
|---|
 | 1129 |                     x_numer = cr_2*x0_2 - r_2*x0_2 + x0_2*x0_2 + x0_2*y0_2;
 | 
|---|
 | 1130 |                     x_denom = 2*x0*x0_2 + 2*x0*y0_2;
 | 
|---|
 | 1131 |                     y_numer = cr_2*y0 - r_2*y0 + x0_2*y0 + y0*y0_2;
 | 
|---|
 | 1132 |                     y_denom = 2*(x0_2 + y0_2);
 | 
|---|
 | 1133 |                     
 | 
|---|
 | 1134 |                     sqrt_radical = sqrt(radical);
 | 
|---|
 | 1135 |                     
 | 
|---|
 | 1136 |                     double x_0=(x_numer - y0*sqrt_radical)/x_denom;
 | 
|---|
 | 1137 |                     double y_0=(y_numer + sqrt_radical)/y_denom;
 | 
|---|
 | 1138 |                     double x_1=(x_numer + y0*sqrt_radical)/x_denom;
 | 
|---|
 | 1139 |                     double y_1=(y_numer - sqrt_radical)/y_denom;
 | 
|---|
 | 1140 | 
 | 
|---|
 | 1141 |                     // Now calculate the angular range of these ordered
 | 
|---|
 | 1142 |                     // points and place them on the first Riemann sheet.
 | 
|---|
 | 1143 |                     // and sort their order
 | 
|---|
 | 1144 |                     theta1=atan2(y_0, x_0);
 | 
|---|
 | 1145 |                     theta2=atan2(y_1, x_1);
 | 
|---|
 | 1146 |                     if (theta1 < 0.0) theta1+=2.*M_PI;
 | 
|---|
 | 1147 |                     if (theta2 < 0.0) theta2+=2.*M_PI;
 | 
|---|
 | 1148 |                     if (theta1 > theta2)
 | 
|---|
 | 1149 |                     {
 | 
|---|
 | 1150 |                         double tmptheta=theta1;
 | 
|---|
 | 1151 |                         theta1=theta2;
 | 
|---|
 | 1152 |                         theta2=tmptheta;
 | 
|---|
 | 1153 |                     }
 | 
|---|
 | 1154 |                     //printf("In k loop, k=%d, theta1=%lf, theta2=%lf\n",
 | 
|---|
 | 1155 |                     //       k,theta1, theta2);
 | 
|---|
 | 1156 |                     // Determine which of the two possible chords 
 | 
|---|
 | 1157 |                     // is inside s[k]
 | 
|---|
 | 1158 |                     double origin_dist=((x0-cr)*(x0-cr)+(y0*y0));
 | 
|---|
 | 1159 |                     if (origin_dist < r_2) // it's got the origin
 | 
|---|
 | 1160 |                     {
 | 
|---|
 | 1161 |                         intvl.add(0, theta1);
 | 
|---|
 | 1162 |                         intvl.add(theta2, 2.*M_PI);
 | 
|---|
 | 1163 |                     }
 | 
|---|
 | 1164 |                     else        // it doesn't have the origin
 | 
|---|
 | 1165 |                     {
 | 
|---|
 | 1166 |                         intvl.add(theta1, theta2);
 | 
|---|
 | 1167 |                     }
 | 
|---|
 | 1168 | 
 | 
|---|
 | 1169 |                     // Now test to see if the range is covered
 | 
|---|
 | 1170 |                     if (intvl.test_interval(min_angle[0]+epsilon,
 | 
|---|
 | 1171 |                                             max_angle[0]-epsilon) &&
 | 
|---|
 | 1172 |                         (angle_segs!=2 ||
 | 
|---|
 | 1173 |                          intvl.test_interval(min_angle[1]+epsilon,
 | 
|---|
 | 1174 |                                              max_angle[1]-epsilon)))
 | 
|---|
 | 1175 |                     {
 | 
|---|
 | 1176 |                         goto next_j;
 | 
|---|
 | 1177 |                     }
 | 
|---|
 | 1178 |                 }
 | 
|---|
 | 1179 |             }
 | 
|---|
 | 1180 |             if (!intvl.test_interval(min_angle[0]+epsilon,
 | 
|---|
 | 1181 |                                      max_angle[0]-epsilon))
 | 
|---|
 | 1182 |             {
 | 
|---|
 | 1183 |                 // No need to keep testing, return 0
 | 
|---|
 | 1184 |                 n_internal_edge_not_covered_++;
 | 
|---|
 | 1185 |                 return 0;
 | 
|---|
 | 1186 |                 //printf(" Non-internal coverage(1)\n");
 | 
|---|
 | 1187 |                 //goto next_test;
 | 
|---|
 | 1188 |             }
 | 
|---|
 | 1189 |             if (angle_segs==2)
 | 
|---|
 | 1190 |             {
 | 
|---|
 | 1191 |                 if  (!intvl.test_interval(min_angle[1]+epsilon,
 | 
|---|
 | 1192 |                                           max_angle[1]-epsilon))
 | 
|---|
 | 1193 |                 {
 | 
|---|
 | 1194 |                     n_internal_edge_not_covered_++;
 | 
|---|
 | 1195 |                     return 0;
 | 
|---|
 | 1196 |                     //printf(" Non-internal coverage(2)\n");
 | 
|---|
 | 1197 |                     //goto next_test;
 | 
|---|
 | 1198 |                 }
 | 
|---|
 | 1199 |                 else
 | 
|---|
 | 1200 |                 {
 | 
|---|
 | 1201 |                     goto next_j;
 | 
|---|
 | 1202 |                 }
 | 
|---|
 | 1203 |             }
 | 
|---|
 | 1204 |           next_j:
 | 
|---|
 | 1205 |             continue;
 | 
|---|
 | 1206 |         }
 | 
|---|
 | 1207 |     }
 | 
|---|
 | 1208 |     
 | 
|---|
 | 1209 |     // Since we made it past all of the sphere intersections, the
 | 
|---|
 | 1210 |     // surface is totally covered
 | 
|---|
 | 1211 |     n_totally_covered_++;
 | 
|---|
 | 1212 |     return 1;
 | 
|---|
 | 1213 | }
 | 
|---|
 | 1214 | 
 | 
|---|
 | 1215 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 1216 | 
 | 
|---|
 | 1217 | // Local Variables:
 | 
|---|
 | 1218 | // mode: c++
 | 
|---|
 | 1219 | // c-file-style: "CLJ"
 | 
|---|
 | 1220 | // End:
 | 
|---|