| [0b990d] | 1 | %BASIS "aug-cc-pCVQZ" CARTESIAN | 
|---|
|  | 2 | basis:( | 
|---|
|  | 3 | %Elements                             References | 
|---|
|  | 4 | %--------                             ---------- | 
|---|
|  | 5 | % H     : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). | 
|---|
|  | 6 | % He    : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). | 
|---|
|  | 7 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). | 
|---|
|  | 8 | %Na - Mg: D.E. Woon and T.H. Dunning, Jr.  (to be published) | 
|---|
|  | 9 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr.  J. Chem. Phys. 98, 1358 (1993). | 
|---|
|  | 10 | %Ca     : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). | 
|---|
|  | 11 | %Elements                             References | 
|---|
|  | 12 | %--------                             ---------- | 
|---|
|  | 13 | % H     : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). | 
|---|
|  | 14 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and | 
|---|
|  | 15 | %         T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995). | 
|---|
|  | 16 | %Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002) | 
|---|
|  | 17 | %Ca     : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). | 
|---|
|  | 18 | %Elements                             References | 
|---|
|  | 19 | %--------                             --------- | 
|---|
|  | 20 | % H    :  T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). | 
|---|
|  | 21 | % He   :  D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994). | 
|---|
|  | 22 | % B - F:  R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96, | 
|---|
|  | 23 | %         6769 (1992). | 
|---|
|  | 24 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993). | 
|---|
|  | 25 | % | 
|---|
|  | 26 | % | 
|---|
|  | 27 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
|  | 28 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
|  | 29 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 30 | boron: "aug-cc-pCVQZ": [ | 
|---|
|  | 31 | (type: [am = s am = s] | 
|---|
|  | 32 | {exp coef:0 coef:1} = { | 
|---|
|  | 33 | 23870.000000      0.88000000000E-04 -0.18000000000E-04 | 
|---|
|  | 34 | 3575.0000000      0.68700000000E-03 -0.13900000000E-03 | 
|---|
|  | 35 | 812.80000000      0.36000000000E-02 -0.72500000000E-03 | 
|---|
|  | 36 | 229.70000000      0.14949000000E-01 -0.30630000000E-02 | 
|---|
|  | 37 | 74.690000000      0.51435000000E-01 -0.10581000000E-01 | 
|---|
|  | 38 | 26.810000000      0.14330200000     -0.31365000000E-01 | 
|---|
|  | 39 | 10.320000000      0.30093500000     -0.71012000000E-01 | 
|---|
|  | 40 | 4.1780000000      0.40352600000     -0.13210300000 | 
|---|
|  | 41 | 1.7270000000      0.22534000000     -0.12307200000 | 
|---|
|  | 42 | }) | 
|---|
|  | 43 | (type: [am = s] | 
|---|
|  | 44 | {exp coef:0} = { | 
|---|
|  | 45 | 0.47040000000       1.0000000000 | 
|---|
|  | 46 | }) | 
|---|
|  | 47 | (type: [am = s] | 
|---|
|  | 48 | {exp coef:0} = { | 
|---|
|  | 49 | 0.18960000000       1.0000000000 | 
|---|
|  | 50 | }) | 
|---|
|  | 51 | (type: [am = s] | 
|---|
|  | 52 | {exp coef:0} = { | 
|---|
|  | 53 | 0.73940000000E-01   1.0000000000 | 
|---|
|  | 54 | }) | 
|---|
|  | 55 | (type: [am = s] | 
|---|
|  | 56 | {exp coef:0} = { | 
|---|
|  | 57 | 4.8640000000       1.0000000000 | 
|---|
|  | 58 | }) | 
|---|
|  | 59 | (type: [am = s] | 
|---|
|  | 60 | {exp coef:0} = { | 
|---|
|  | 61 | 13.288000000       1.0000000000 | 
|---|
|  | 62 | }) | 
|---|
|  | 63 | (type: [am = s] | 
|---|
|  | 64 | {exp coef:0} = { | 
|---|
|  | 65 | 36.304000000       1.0000000000 | 
|---|
|  | 66 | }) | 
|---|
|  | 67 | (type: [am = s] | 
|---|
|  | 68 | {exp coef:0} = { | 
|---|
|  | 69 | 0.27210000000E-01   1.0000000000 | 
|---|
|  | 70 | }) | 
|---|
|  | 71 | (type: [am = p] | 
|---|
|  | 72 | {exp coef:0} = { | 
|---|
|  | 73 | 22.260000000      0.50950000000E-02 | 
|---|
|  | 74 | 5.0580000000      0.33206000000E-01 | 
|---|
|  | 75 | 1.4870000000      0.13231400000 | 
|---|
|  | 76 | }) | 
|---|
|  | 77 | (type: [am = p] | 
|---|
|  | 78 | {exp coef:0} = { | 
|---|
|  | 79 | 0.50710000000       1.0000000000 | 
|---|
|  | 80 | }) | 
|---|
|  | 81 | (type: [am = p] | 
|---|
|  | 82 | {exp coef:0} = { | 
|---|
|  | 83 | 0.18120000000       1.0000000000 | 
|---|
|  | 84 | }) | 
|---|
|  | 85 | (type: [am = p] | 
|---|
|  | 86 | {exp coef:0} = { | 
|---|
|  | 87 | 0.64630000000E-01   1.0000000000 | 
|---|
|  | 88 | }) | 
|---|
|  | 89 | (type: [am = p] | 
|---|
|  | 90 | {exp coef:0} = { | 
|---|
|  | 91 | 5.4890000000       1.0000000000 | 
|---|
|  | 92 | }) | 
|---|
|  | 93 | (type: [am = p] | 
|---|
|  | 94 | {exp coef:0} = { | 
|---|
|  | 95 | 16.302000000       1.0000000000 | 
|---|
|  | 96 | }) | 
|---|
|  | 97 | (type: [am = p] | 
|---|
|  | 98 | {exp coef:0} = { | 
|---|
|  | 99 | 48.418000000       1.0000000000 | 
|---|
|  | 100 | }) | 
|---|
|  | 101 | (type: [am = p] | 
|---|
|  | 102 | {exp coef:0} = { | 
|---|
|  | 103 | 0.18780000000E-01   1.0000000000 | 
|---|
|  | 104 | }) | 
|---|
|  | 105 | (type: [(am = d puream = 1)] | 
|---|
|  | 106 | {exp coef:0} = { | 
|---|
|  | 107 | 1.1100000000       1.0000000000 | 
|---|
|  | 108 | }) | 
|---|
|  | 109 | (type: [(am = d puream = 1)] | 
|---|
|  | 110 | {exp coef:0} = { | 
|---|
|  | 111 | 0.40200000000       1.0000000000 | 
|---|
|  | 112 | }) | 
|---|
|  | 113 | (type: [(am = d puream = 1)] | 
|---|
|  | 114 | {exp coef:0} = { | 
|---|
|  | 115 | 0.14500000000       1.0000000000 | 
|---|
|  | 116 | }) | 
|---|
|  | 117 | (type: [(am = d puream = 1)] | 
|---|
|  | 118 | {exp coef:0} = { | 
|---|
|  | 119 | 6.6400000000       1.0000000000 | 
|---|
|  | 120 | }) | 
|---|
|  | 121 | (type: [(am = d puream = 1)] | 
|---|
|  | 122 | {exp coef:0} = { | 
|---|
|  | 123 | 24.462000000       1.0000000000 | 
|---|
|  | 124 | }) | 
|---|
|  | 125 | (type: [(am = d puream = 1)] | 
|---|
|  | 126 | {exp coef:0} = { | 
|---|
|  | 127 | 0.46600000000E-01   1.0000000000 | 
|---|
|  | 128 | }) | 
|---|
|  | 129 | (type: [(am = f puream = 1)] | 
|---|
|  | 130 | {exp coef:0} = { | 
|---|
|  | 131 | 0.88200000000       1.0000000000 | 
|---|
|  | 132 | }) | 
|---|
|  | 133 | (type: [(am = f puream = 1)] | 
|---|
|  | 134 | {exp coef:0} = { | 
|---|
|  | 135 | 0.31100000000       1.0000000000 | 
|---|
|  | 136 | }) | 
|---|
|  | 137 | (type: [(am = f puream = 1)] | 
|---|
|  | 138 | {exp coef:0} = { | 
|---|
|  | 139 | 18.794000000       1.0000000000 | 
|---|
|  | 140 | }) | 
|---|
|  | 141 | (type: [(am = f puream = 1)] | 
|---|
|  | 142 | {exp coef:0} = { | 
|---|
|  | 143 | 0.11300000000       1.0000000000 | 
|---|
|  | 144 | }) | 
|---|
|  | 145 | (type: [(am = g puream = 1)] | 
|---|
|  | 146 | {exp coef:0} = { | 
|---|
|  | 147 | 0.67300000000       1.0000000000 | 
|---|
|  | 148 | }) | 
|---|
|  | 149 | (type: [(am = g puream = 1)] | 
|---|
|  | 150 | {exp coef:0} = { | 
|---|
|  | 151 | 0.27300000000       1.0000000000 | 
|---|
|  | 152 | }) | 
|---|
|  | 153 | ] | 
|---|
|  | 154 | % | 
|---|
|  | 155 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
|  | 156 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
|  | 157 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 158 | carbon: "aug-cc-pCVQZ": [ | 
|---|
|  | 159 | (type: [am = s am = s] | 
|---|
|  | 160 | {exp coef:0 coef:1} = { | 
|---|
|  | 161 | 33980.000000      0.91000000000E-04 -0.19000000000E-04 | 
|---|
|  | 162 | 5089.0000000      0.70400000000E-03 -0.15100000000E-03 | 
|---|
|  | 163 | 1157.0000000      0.36930000000E-02 -0.78500000000E-03 | 
|---|
|  | 164 | 326.60000000      0.15360000000E-01 -0.33240000000E-02 | 
|---|
|  | 165 | 106.10000000      0.52929000000E-01 -0.11512000000E-01 | 
|---|
|  | 166 | 38.110000000      0.14704300000     -0.34160000000E-01 | 
|---|
|  | 167 | 14.750000000      0.30563100000     -0.77173000000E-01 | 
|---|
|  | 168 | 6.0350000000      0.39934500000     -0.14149300000 | 
|---|
|  | 169 | 2.5300000000      0.21705100000     -0.11801900000 | 
|---|
|  | 170 | }) | 
|---|
|  | 171 | (type: [am = s] | 
|---|
|  | 172 | {exp coef:0} = { | 
|---|
|  | 173 | 0.73550000000       1.0000000000 | 
|---|
|  | 174 | }) | 
|---|
|  | 175 | (type: [am = s] | 
|---|
|  | 176 | {exp coef:0} = { | 
|---|
|  | 177 | 0.29050000000       1.0000000000 | 
|---|
|  | 178 | }) | 
|---|
|  | 179 | (type: [am = s] | 
|---|
|  | 180 | {exp coef:0} = { | 
|---|
|  | 181 | 0.11110000000       1.0000000000 | 
|---|
|  | 182 | }) | 
|---|
|  | 183 | (type: [am = s] | 
|---|
|  | 184 | {exp coef:0} = { | 
|---|
|  | 185 | 7.2160000000       1.0000000000 | 
|---|
|  | 186 | }) | 
|---|
|  | 187 | (type: [am = s] | 
|---|
|  | 188 | {exp coef:0} = { | 
|---|
|  | 189 | 19.570000000       1.0000000000 | 
|---|
|  | 190 | }) | 
|---|
|  | 191 | (type: [am = s] | 
|---|
|  | 192 | {exp coef:0} = { | 
|---|
|  | 193 | 53.073000000       1.0000000000 | 
|---|
|  | 194 | }) | 
|---|
|  | 195 | (type: [am = s] | 
|---|
|  | 196 | {exp coef:0} = { | 
|---|
|  | 197 | 0.41450000000E-01   1.0000000000 | 
|---|
|  | 198 | }) | 
|---|
|  | 199 | (type: [am = p] | 
|---|
|  | 200 | {exp coef:0} = { | 
|---|
|  | 201 | 34.510000000      0.53780000000E-02 | 
|---|
|  | 202 | 7.9150000000      0.36132000000E-01 | 
|---|
|  | 203 | 2.3680000000      0.14249300000 | 
|---|
|  | 204 | }) | 
|---|
|  | 205 | (type: [am = p] | 
|---|
|  | 206 | {exp coef:0} = { | 
|---|
|  | 207 | 0.81320000000       1.0000000000 | 
|---|
|  | 208 | }) | 
|---|
|  | 209 | (type: [am = p] | 
|---|
|  | 210 | {exp coef:0} = { | 
|---|
|  | 211 | 0.28900000000       1.0000000000 | 
|---|
|  | 212 | }) | 
|---|
|  | 213 | (type: [am = p] | 
|---|
|  | 214 | {exp coef:0} = { | 
|---|
|  | 215 | 0.10070000000       1.0000000000 | 
|---|
|  | 216 | }) | 
|---|
|  | 217 | (type: [am = p] | 
|---|
|  | 218 | {exp coef:0} = { | 
|---|
|  | 219 | 8.1820000000       1.0000000000 | 
|---|
|  | 220 | }) | 
|---|
|  | 221 | (type: [am = p] | 
|---|
|  | 222 | {exp coef:0} = { | 
|---|
|  | 223 | 24.186000000       1.0000000000 | 
|---|
|  | 224 | }) | 
|---|
|  | 225 | (type: [am = p] | 
|---|
|  | 226 | {exp coef:0} = { | 
|---|
|  | 227 | 71.494000000       1.0000000000 | 
|---|
|  | 228 | }) | 
|---|
|  | 229 | (type: [am = p] | 
|---|
|  | 230 | {exp coef:0} = { | 
|---|
|  | 231 | 0.32180000000E-01   1.0000000000 | 
|---|
|  | 232 | }) | 
|---|
|  | 233 | (type: [(am = d puream = 1)] | 
|---|
|  | 234 | {exp coef:0} = { | 
|---|
|  | 235 | 1.8480000000       1.0000000000 | 
|---|
|  | 236 | }) | 
|---|
|  | 237 | (type: [(am = d puream = 1)] | 
|---|
|  | 238 | {exp coef:0} = { | 
|---|
|  | 239 | 0.64900000000       1.0000000000 | 
|---|
|  | 240 | }) | 
|---|
|  | 241 | (type: [(am = d puream = 1)] | 
|---|
|  | 242 | {exp coef:0} = { | 
|---|
|  | 243 | 0.22800000000       1.0000000000 | 
|---|
|  | 244 | }) | 
|---|
|  | 245 | (type: [(am = d puream = 1)] | 
|---|
|  | 246 | {exp coef:0} = { | 
|---|
|  | 247 | 8.6560000000       1.0000000000 | 
|---|
|  | 248 | }) | 
|---|
|  | 249 | (type: [(am = d puream = 1)] | 
|---|
|  | 250 | {exp coef:0} = { | 
|---|
|  | 251 | 33.213000000       1.0000000000 | 
|---|
|  | 252 | }) | 
|---|
|  | 253 | (type: [(am = d puream = 1)] | 
|---|
|  | 254 | {exp coef:0} = { | 
|---|
|  | 255 | 0.76600000000E-01   1.0000000000 | 
|---|
|  | 256 | }) | 
|---|
|  | 257 | (type: [(am = f puream = 1)] | 
|---|
|  | 258 | {exp coef:0} = { | 
|---|
|  | 259 | 1.4190000000       1.0000000000 | 
|---|
|  | 260 | }) | 
|---|
|  | 261 | (type: [(am = f puream = 1)] | 
|---|
|  | 262 | {exp coef:0} = { | 
|---|
|  | 263 | 0.48500000000       1.0000000000 | 
|---|
|  | 264 | }) | 
|---|
|  | 265 | (type: [(am = f puream = 1)] | 
|---|
|  | 266 | {exp coef:0} = { | 
|---|
|  | 267 | 24.694000000       1.0000000000 | 
|---|
|  | 268 | }) | 
|---|
|  | 269 | (type: [(am = f puream = 1)] | 
|---|
|  | 270 | {exp coef:0} = { | 
|---|
|  | 271 | 0.18700000000       1.0000000000 | 
|---|
|  | 272 | }) | 
|---|
|  | 273 | (type: [(am = g puream = 1)] | 
|---|
|  | 274 | {exp coef:0} = { | 
|---|
|  | 275 | 1.0110000000       1.0000000000 | 
|---|
|  | 276 | }) | 
|---|
|  | 277 | (type: [(am = g puream = 1)] | 
|---|
|  | 278 | {exp coef:0} = { | 
|---|
|  | 279 | 0.42400000000       1.0000000000 | 
|---|
|  | 280 | }) | 
|---|
|  | 281 | ] | 
|---|
|  | 282 | % | 
|---|
|  | 283 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
|  | 284 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
|  | 285 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 286 | nitrogen: "aug-cc-pCVQZ": [ | 
|---|
|  | 287 | (type: [am = s am = s] | 
|---|
|  | 288 | {exp coef:0 coef:1} = { | 
|---|
|  | 289 | 45840.000000      0.92000000000E-04 -0.20000000000E-04 | 
|---|
|  | 290 | 6868.0000000      0.71700000000E-03 -0.15900000000E-03 | 
|---|
|  | 291 | 1563.0000000      0.37490000000E-02 -0.82400000000E-03 | 
|---|
|  | 292 | 442.40000000      0.15532000000E-01 -0.34780000000E-02 | 
|---|
|  | 293 | 144.30000000      0.53146000000E-01 -0.11966000000E-01 | 
|---|
|  | 294 | 52.180000000      0.14678700000     -0.35388000000E-01 | 
|---|
|  | 295 | 20.340000000      0.30466300000     -0.80077000000E-01 | 
|---|
|  | 296 | 8.3810000000      0.39768400000     -0.14672200000 | 
|---|
|  | 297 | 3.5290000000      0.21764100000     -0.11636000000 | 
|---|
|  | 298 | }) | 
|---|
|  | 299 | (type: [am = s] | 
|---|
|  | 300 | {exp coef:0} = { | 
|---|
|  | 301 | 1.0540000000       1.0000000000 | 
|---|
|  | 302 | }) | 
|---|
|  | 303 | (type: [am = s] | 
|---|
|  | 304 | {exp coef:0} = { | 
|---|
|  | 305 | 0.41180000000       1.0000000000 | 
|---|
|  | 306 | }) | 
|---|
|  | 307 | (type: [am = s] | 
|---|
|  | 308 | {exp coef:0} = { | 
|---|
|  | 309 | 0.15520000000       1.0000000000 | 
|---|
|  | 310 | }) | 
|---|
|  | 311 | (type: [am = s] | 
|---|
|  | 312 | {exp coef:0} = { | 
|---|
|  | 313 | 9.8620000000       1.0000000000 | 
|---|
|  | 314 | }) | 
|---|
|  | 315 | (type: [am = s] | 
|---|
|  | 316 | {exp coef:0} = { | 
|---|
|  | 317 | 26.627000000       1.0000000000 | 
|---|
|  | 318 | }) | 
|---|
|  | 319 | (type: [am = s] | 
|---|
|  | 320 | {exp coef:0} = { | 
|---|
|  | 321 | 71.894000000       1.0000000000 | 
|---|
|  | 322 | }) | 
|---|
|  | 323 | (type: [am = s] | 
|---|
|  | 324 | {exp coef:0} = { | 
|---|
|  | 325 | 0.54640000000E-01   1.0000000000 | 
|---|
|  | 326 | }) | 
|---|
|  | 327 | (type: [am = p] | 
|---|
|  | 328 | {exp coef:0} = { | 
|---|
|  | 329 | 49.330000000      0.55330000000E-02 | 
|---|
|  | 330 | 11.370000000      0.37962000000E-01 | 
|---|
|  | 331 | 3.4350000000      0.14902800000 | 
|---|
|  | 332 | }) | 
|---|
|  | 333 | (type: [am = p] | 
|---|
|  | 334 | {exp coef:0} = { | 
|---|
|  | 335 | 1.1820000000       1.0000000000 | 
|---|
|  | 336 | }) | 
|---|
|  | 337 | (type: [am = p] | 
|---|
|  | 338 | {exp coef:0} = { | 
|---|
|  | 339 | 0.41730000000       1.0000000000 | 
|---|
|  | 340 | }) | 
|---|
|  | 341 | (type: [am = p] | 
|---|
|  | 342 | {exp coef:0} = { | 
|---|
|  | 343 | 0.14280000000       1.0000000000 | 
|---|
|  | 344 | }) | 
|---|
|  | 345 | (type: [am = p] | 
|---|
|  | 346 | {exp coef:0} = { | 
|---|
|  | 347 | 11.320000000       1.0000000000 | 
|---|
|  | 348 | }) | 
|---|
|  | 349 | (type: [am = p] | 
|---|
|  | 350 | {exp coef:0} = { | 
|---|
|  | 351 | 33.349000000       1.0000000000 | 
|---|
|  | 352 | }) | 
|---|
|  | 353 | (type: [am = p] | 
|---|
|  | 354 | {exp coef:0} = { | 
|---|
|  | 355 | 98.245000000       1.0000000000 | 
|---|
|  | 356 | }) | 
|---|
|  | 357 | (type: [am = p] | 
|---|
|  | 358 | {exp coef:0} = { | 
|---|
|  | 359 | 0.44020000000E-01   1.0000000000 | 
|---|
|  | 360 | }) | 
|---|
|  | 361 | (type: [(am = d puream = 1)] | 
|---|
|  | 362 | {exp coef:0} = { | 
|---|
|  | 363 | 2.8370000000       1.0000000000 | 
|---|
|  | 364 | }) | 
|---|
|  | 365 | (type: [(am = d puream = 1)] | 
|---|
|  | 366 | {exp coef:0} = { | 
|---|
|  | 367 | 0.96800000000       1.0000000000 | 
|---|
|  | 368 | }) | 
|---|
|  | 369 | (type: [(am = d puream = 1)] | 
|---|
|  | 370 | {exp coef:0} = { | 
|---|
|  | 371 | 0.33500000000       1.0000000000 | 
|---|
|  | 372 | }) | 
|---|
|  | 373 | (type: [(am = d puream = 1)] | 
|---|
|  | 374 | {exp coef:0} = { | 
|---|
|  | 375 | 11.828000000       1.0000000000 | 
|---|
|  | 376 | }) | 
|---|
|  | 377 | (type: [(am = d puream = 1)] | 
|---|
|  | 378 | {exp coef:0} = { | 
|---|
|  | 379 | 45.218000000       1.0000000000 | 
|---|
|  | 380 | }) | 
|---|
|  | 381 | (type: [(am = d puream = 1)] | 
|---|
|  | 382 | {exp coef:0} = { | 
|---|
|  | 383 | 0.11100000000       1.0000000000 | 
|---|
|  | 384 | }) | 
|---|
|  | 385 | (type: [(am = f puream = 1)] | 
|---|
|  | 386 | {exp coef:0} = { | 
|---|
|  | 387 | 2.0270000000       1.0000000000 | 
|---|
|  | 388 | }) | 
|---|
|  | 389 | (type: [(am = f puream = 1)] | 
|---|
|  | 390 | {exp coef:0} = { | 
|---|
|  | 391 | 0.68500000000       1.0000000000 | 
|---|
|  | 392 | }) | 
|---|
|  | 393 | (type: [(am = f puream = 1)] | 
|---|
|  | 394 | {exp coef:0} = { | 
|---|
|  | 395 | 28.364000000       1.0000000000 | 
|---|
|  | 396 | }) | 
|---|
|  | 397 | (type: [(am = f puream = 1)] | 
|---|
|  | 398 | {exp coef:0} = { | 
|---|
|  | 399 | 0.24500000000       1.0000000000 | 
|---|
|  | 400 | }) | 
|---|
|  | 401 | (type: [(am = g puream = 1)] | 
|---|
|  | 402 | {exp coef:0} = { | 
|---|
|  | 403 | 1.4270000000       1.0000000000 | 
|---|
|  | 404 | }) | 
|---|
|  | 405 | (type: [(am = g puream = 1)] | 
|---|
|  | 406 | {exp coef:0} = { | 
|---|
|  | 407 | 0.55900000000       1.0000000000 | 
|---|
|  | 408 | }) | 
|---|
|  | 409 | ] | 
|---|
|  | 410 | % | 
|---|
|  | 411 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
|  | 412 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
|  | 413 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 414 | oxygen: "aug-cc-pCVQZ": [ | 
|---|
|  | 415 | (type: [am = s am = s] | 
|---|
|  | 416 | {exp coef:0 coef:1} = { | 
|---|
|  | 417 | 61420.000000      0.90000000000E-04 -0.20000000000E-04 | 
|---|
|  | 418 | 9199.0000000      0.69800000000E-03 -0.15900000000E-03 | 
|---|
|  | 419 | 2091.0000000      0.36640000000E-02 -0.82900000000E-03 | 
|---|
|  | 420 | 590.90000000      0.15218000000E-01 -0.35080000000E-02 | 
|---|
|  | 421 | 192.30000000      0.52423000000E-01 -0.12156000000E-01 | 
|---|
|  | 422 | 69.320000000      0.14592100000     -0.36261000000E-01 | 
|---|
|  | 423 | 26.970000000      0.30525800000     -0.82992000000E-01 | 
|---|
|  | 424 | 11.100000000      0.39850800000     -0.15209000000 | 
|---|
|  | 425 | 4.6820000000      0.21698000000     -0.11533100000 | 
|---|
|  | 426 | }) | 
|---|
|  | 427 | (type: [am = s] | 
|---|
|  | 428 | {exp coef:0} = { | 
|---|
|  | 429 | 1.4280000000       1.0000000000 | 
|---|
|  | 430 | }) | 
|---|
|  | 431 | (type: [am = s] | 
|---|
|  | 432 | {exp coef:0} = { | 
|---|
|  | 433 | 0.55470000000       1.0000000000 | 
|---|
|  | 434 | }) | 
|---|
|  | 435 | (type: [am = s] | 
|---|
|  | 436 | {exp coef:0} = { | 
|---|
|  | 437 | 0.20670000000       1.0000000000 | 
|---|
|  | 438 | }) | 
|---|
|  | 439 | (type: [am = s] | 
|---|
|  | 440 | {exp coef:0} = { | 
|---|
|  | 441 | 12.974000000       1.0000000000 | 
|---|
|  | 442 | }) | 
|---|
|  | 443 | (type: [am = s] | 
|---|
|  | 444 | {exp coef:0} = { | 
|---|
|  | 445 | 34.900000000       1.0000000000 | 
|---|
|  | 446 | }) | 
|---|
|  | 447 | (type: [am = s] | 
|---|
|  | 448 | {exp coef:0} = { | 
|---|
|  | 449 | 93.881000000       1.0000000000 | 
|---|
|  | 450 | }) | 
|---|
|  | 451 | (type: [am = s] | 
|---|
|  | 452 | {exp coef:0} = { | 
|---|
|  | 453 | 0.69590000000E-01   1.0000000000 | 
|---|
|  | 454 | }) | 
|---|
|  | 455 | (type: [am = p] | 
|---|
|  | 456 | {exp coef:0} = { | 
|---|
|  | 457 | 63.420000000      0.60440000000E-02 | 
|---|
|  | 458 | 14.660000000      0.41799000000E-01 | 
|---|
|  | 459 | 4.4590000000      0.16114300000 | 
|---|
|  | 460 | }) | 
|---|
|  | 461 | (type: [am = p] | 
|---|
|  | 462 | {exp coef:0} = { | 
|---|
|  | 463 | 1.5310000000       1.0000000000 | 
|---|
|  | 464 | }) | 
|---|
|  | 465 | (type: [am = p] | 
|---|
|  | 466 | {exp coef:0} = { | 
|---|
|  | 467 | 0.53020000000       1.0000000000 | 
|---|
|  | 468 | }) | 
|---|
|  | 469 | (type: [am = p] | 
|---|
|  | 470 | {exp coef:0} = { | 
|---|
|  | 471 | 0.17500000000       1.0000000000 | 
|---|
|  | 472 | }) | 
|---|
|  | 473 | (type: [am = p] | 
|---|
|  | 474 | {exp coef:0} = { | 
|---|
|  | 475 | 14.475000000       1.0000000000 | 
|---|
|  | 476 | }) | 
|---|
|  | 477 | (type: [am = p] | 
|---|
|  | 478 | {exp coef:0} = { | 
|---|
|  | 479 | 42.730000000       1.0000000000 | 
|---|
|  | 480 | }) | 
|---|
|  | 481 | (type: [am = p] | 
|---|
|  | 482 | {exp coef:0} = { | 
|---|
|  | 483 | 126.14000000       1.0000000000 | 
|---|
|  | 484 | }) | 
|---|
|  | 485 | (type: [am = p] | 
|---|
|  | 486 | {exp coef:0} = { | 
|---|
|  | 487 | 0.53480000000E-01   1.0000000000 | 
|---|
|  | 488 | }) | 
|---|
|  | 489 | (type: [(am = d puream = 1)] | 
|---|
|  | 490 | {exp coef:0} = { | 
|---|
|  | 491 | 3.7750000000       1.0000000000 | 
|---|
|  | 492 | }) | 
|---|
|  | 493 | (type: [(am = d puream = 1)] | 
|---|
|  | 494 | {exp coef:0} = { | 
|---|
|  | 495 | 1.3000000000       1.0000000000 | 
|---|
|  | 496 | }) | 
|---|
|  | 497 | (type: [(am = d puream = 1)] | 
|---|
|  | 498 | {exp coef:0} = { | 
|---|
|  | 499 | 0.44400000000       1.0000000000 | 
|---|
|  | 500 | }) | 
|---|
|  | 501 | (type: [(am = d puream = 1)] | 
|---|
|  | 502 | {exp coef:0} = { | 
|---|
|  | 503 | 14.927000000       1.0000000000 | 
|---|
|  | 504 | }) | 
|---|
|  | 505 | (type: [(am = d puream = 1)] | 
|---|
|  | 506 | {exp coef:0} = { | 
|---|
|  | 507 | 57.544000000       1.0000000000 | 
|---|
|  | 508 | }) | 
|---|
|  | 509 | (type: [(am = d puream = 1)] | 
|---|
|  | 510 | {exp coef:0} = { | 
|---|
|  | 511 | 0.15400000000       1.0000000000 | 
|---|
|  | 512 | }) | 
|---|
|  | 513 | (type: [(am = f puream = 1)] | 
|---|
|  | 514 | {exp coef:0} = { | 
|---|
|  | 515 | 2.6660000000       1.0000000000 | 
|---|
|  | 516 | }) | 
|---|
|  | 517 | (type: [(am = f puream = 1)] | 
|---|
|  | 518 | {exp coef:0} = { | 
|---|
|  | 519 | 0.85900000000       1.0000000000 | 
|---|
|  | 520 | }) | 
|---|
|  | 521 | (type: [(am = f puream = 1)] | 
|---|
|  | 522 | {exp coef:0} = { | 
|---|
|  | 523 | 26.483000000       1.0000000000 | 
|---|
|  | 524 | }) | 
|---|
|  | 525 | (type: [(am = f puream = 1)] | 
|---|
|  | 526 | {exp coef:0} = { | 
|---|
|  | 527 | 0.32400000000       1.0000000000 | 
|---|
|  | 528 | }) | 
|---|
|  | 529 | (type: [(am = g puream = 1)] | 
|---|
|  | 530 | {exp coef:0} = { | 
|---|
|  | 531 | 1.8460000000       1.0000000000 | 
|---|
|  | 532 | }) | 
|---|
|  | 533 | (type: [(am = g puream = 1)] | 
|---|
|  | 534 | {exp coef:0} = { | 
|---|
|  | 535 | 0.71400000000       1.0000000000 | 
|---|
|  | 536 | }) | 
|---|
|  | 537 | ] | 
|---|
|  | 538 | % | 
|---|
|  | 539 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
|  | 540 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
|  | 541 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 542 | fluorine: "aug-cc-pCVQZ": [ | 
|---|
|  | 543 | (type: [am = s am = s] | 
|---|
|  | 544 | {exp coef:0 coef:1} = { | 
|---|
|  | 545 | 74530.000000      0.95000000000E-04 -0.22000000000E-04 | 
|---|
|  | 546 | 11170.000000      0.73800000000E-03 -0.17200000000E-03 | 
|---|
|  | 547 | 2543.0000000      0.38580000000E-02 -0.89100000000E-03 | 
|---|
|  | 548 | 721.00000000      0.15926000000E-01 -0.37480000000E-02 | 
|---|
|  | 549 | 235.90000000      0.54289000000E-01 -0.12862000000E-01 | 
|---|
|  | 550 | 85.600000000      0.14951300000     -0.38061000000E-01 | 
|---|
|  | 551 | 33.550000000      0.30825200000     -0.86239000000E-01 | 
|---|
|  | 552 | 13.930000000      0.39485300000     -0.15586500000 | 
|---|
|  | 553 | 5.9150000000      0.21103100000     -0.11091400000 | 
|---|
|  | 554 | }) | 
|---|
|  | 555 | (type: [am = s] | 
|---|
|  | 556 | {exp coef:0} = { | 
|---|
|  | 557 | 1.8430000000       1.0000000000 | 
|---|
|  | 558 | }) | 
|---|
|  | 559 | (type: [am = s] | 
|---|
|  | 560 | {exp coef:0} = { | 
|---|
|  | 561 | 0.71240000000       1.0000000000 | 
|---|
|  | 562 | }) | 
|---|
|  | 563 | (type: [am = s] | 
|---|
|  | 564 | {exp coef:0} = { | 
|---|
|  | 565 | 0.26370000000       1.0000000000 | 
|---|
|  | 566 | }) | 
|---|
|  | 567 | (type: [am = s] | 
|---|
|  | 568 | {exp coef:0} = { | 
|---|
|  | 569 | 16.319000000       1.0000000000 | 
|---|
|  | 570 | }) | 
|---|
|  | 571 | (type: [am = s] | 
|---|
|  | 572 | {exp coef:0} = { | 
|---|
|  | 573 | 43.784000000       1.0000000000 | 
|---|
|  | 574 | }) | 
|---|
|  | 575 | (type: [am = s] | 
|---|
|  | 576 | {exp coef:0} = { | 
|---|
|  | 577 | 117.47200000       1.0000000000 | 
|---|
|  | 578 | }) | 
|---|
|  | 579 | (type: [am = s] | 
|---|
|  | 580 | {exp coef:0} = { | 
|---|
|  | 581 | 0.85940000000E-01   1.0000000000 | 
|---|
|  | 582 | }) | 
|---|
|  | 583 | (type: [am = p] | 
|---|
|  | 584 | {exp coef:0} = { | 
|---|
|  | 585 | 80.390000000      0.63470000000E-02 | 
|---|
|  | 586 | 18.630000000      0.44204000000E-01 | 
|---|
|  | 587 | 5.6940000000      0.16851400000 | 
|---|
|  | 588 | }) | 
|---|
|  | 589 | (type: [am = p] | 
|---|
|  | 590 | {exp coef:0} = { | 
|---|
|  | 591 | 1.9530000000       1.0000000000 | 
|---|
|  | 592 | }) | 
|---|
|  | 593 | (type: [am = p] | 
|---|
|  | 594 | {exp coef:0} = { | 
|---|
|  | 595 | 0.67020000000       1.0000000000 | 
|---|
|  | 596 | }) | 
|---|
|  | 597 | (type: [am = p] | 
|---|
|  | 598 | {exp coef:0} = { | 
|---|
|  | 599 | 0.21660000000       1.0000000000 | 
|---|
|  | 600 | }) | 
|---|
|  | 601 | (type: [am = p] | 
|---|
|  | 602 | {exp coef:0} = { | 
|---|
|  | 603 | 18.119000000       1.0000000000 | 
|---|
|  | 604 | }) | 
|---|
|  | 605 | (type: [am = p] | 
|---|
|  | 606 | {exp coef:0} = { | 
|---|
|  | 607 | 53.505000000       1.0000000000 | 
|---|
|  | 608 | }) | 
|---|
|  | 609 | (type: [am = p] | 
|---|
|  | 610 | {exp coef:0} = { | 
|---|
|  | 611 | 158.00100000       1.0000000000 | 
|---|
|  | 612 | }) | 
|---|
|  | 613 | (type: [am = p] | 
|---|
|  | 614 | {exp coef:0} = { | 
|---|
|  | 615 | 0.65680000000E-01   1.0000000000 | 
|---|
|  | 616 | }) | 
|---|
|  | 617 | (type: [(am = d puream = 1)] | 
|---|
|  | 618 | {exp coef:0} = { | 
|---|
|  | 619 | 5.0140000000       1.0000000000 | 
|---|
|  | 620 | }) | 
|---|
|  | 621 | (type: [(am = d puream = 1)] | 
|---|
|  | 622 | {exp coef:0} = { | 
|---|
|  | 623 | 1.7250000000       1.0000000000 | 
|---|
|  | 624 | }) | 
|---|
|  | 625 | (type: [(am = d puream = 1)] | 
|---|
|  | 626 | {exp coef:0} = { | 
|---|
|  | 627 | 0.58600000000       1.0000000000 | 
|---|
|  | 628 | }) | 
|---|
|  | 629 | (type: [(am = d puream = 1)] | 
|---|
|  | 630 | {exp coef:0} = { | 
|---|
|  | 631 | 18.943000000       1.0000000000 | 
|---|
|  | 632 | }) | 
|---|
|  | 633 | (type: [(am = d puream = 1)] | 
|---|
|  | 634 | {exp coef:0} = { | 
|---|
|  | 635 | 72.798000000       1.0000000000 | 
|---|
|  | 636 | }) | 
|---|
|  | 637 | (type: [(am = d puream = 1)] | 
|---|
|  | 638 | {exp coef:0} = { | 
|---|
|  | 639 | 0.20700000000       1.0000000000 | 
|---|
|  | 640 | }) | 
|---|
|  | 641 | (type: [(am = f puream = 1)] | 
|---|
|  | 642 | {exp coef:0} = { | 
|---|
|  | 643 | 3.5620000000       1.0000000000 | 
|---|
|  | 644 | }) | 
|---|
|  | 645 | (type: [(am = f puream = 1)] | 
|---|
|  | 646 | {exp coef:0} = { | 
|---|
|  | 647 | 1.1480000000       1.0000000000 | 
|---|
|  | 648 | }) | 
|---|
|  | 649 | (type: [(am = f puream = 1)] | 
|---|
|  | 650 | {exp coef:0} = { | 
|---|
|  | 651 | 25.161000000       1.0000000000 | 
|---|
|  | 652 | }) | 
|---|
|  | 653 | (type: [(am = f puream = 1)] | 
|---|
|  | 654 | {exp coef:0} = { | 
|---|
|  | 655 | 0.46000000000       1.0000000000 | 
|---|
|  | 656 | }) | 
|---|
|  | 657 | (type: [(am = g puream = 1)] | 
|---|
|  | 658 | {exp coef:0} = { | 
|---|
|  | 659 | 2.3760000000       1.0000000000 | 
|---|
|  | 660 | }) | 
|---|
|  | 661 | (type: [(am = g puream = 1)] | 
|---|
|  | 662 | {exp coef:0} = { | 
|---|
|  | 663 | 0.92400000000       1.0000000000 | 
|---|
|  | 664 | }) | 
|---|
|  | 665 | ] | 
|---|
|  | 666 | % | 
|---|
|  | 667 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
|  | 668 | % AUGMENTING FUNCTIONS: Tight (s,p,d) | 
|---|
|  | 669 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 670 | neon: "aug-cc-pCVQZ": [ | 
|---|
|  | 671 | (type: [am = s am = s] | 
|---|
|  | 672 | {exp coef:0 coef:1} = { | 
|---|
|  | 673 | 99920.000000      0.86000000000E-04 -0.20000000000E-04 | 
|---|
|  | 674 | 14960.000000      0.66900000000E-03 -0.15800000000E-03 | 
|---|
|  | 675 | 3399.0000000      0.35180000000E-02 -0.82400000000E-03 | 
|---|
|  | 676 | 958.90000000      0.14667000000E-01 -0.35000000000E-02 | 
|---|
|  | 677 | 311.20000000      0.50962000000E-01 -0.12233000000E-01 | 
|---|
|  | 678 | 111.70000000      0.14374400000     -0.37017000000E-01 | 
|---|
|  | 679 | 43.320000000      0.30456200000     -0.86113000000E-01 | 
|---|
|  | 680 | 17.800000000      0.40010500000     -0.15838100000 | 
|---|
|  | 681 | 7.5030000000      0.21864400000     -0.11428800000 | 
|---|
|  | 682 | }) | 
|---|
|  | 683 | (type: [am = s] | 
|---|
|  | 684 | {exp coef:0} = { | 
|---|
|  | 685 | 2.3370000000       1.0000000000 | 
|---|
|  | 686 | }) | 
|---|
|  | 687 | (type: [am = s] | 
|---|
|  | 688 | {exp coef:0} = { | 
|---|
|  | 689 | 0.90010000000       1.0000000000 | 
|---|
|  | 690 | }) | 
|---|
|  | 691 | (type: [am = s] | 
|---|
|  | 692 | {exp coef:0} = { | 
|---|
|  | 693 | 0.33010000000       1.0000000000 | 
|---|
|  | 694 | }) | 
|---|
|  | 695 | (type: [am = s] | 
|---|
|  | 696 | {exp coef:0} = { | 
|---|
|  | 697 | 20.180000000       1.0000000000 | 
|---|
|  | 698 | }) | 
|---|
|  | 699 | (type: [am = s] | 
|---|
|  | 700 | {exp coef:0} = { | 
|---|
|  | 701 | 54.042000000       1.0000000000 | 
|---|
|  | 702 | }) | 
|---|
|  | 703 | (type: [am = s] | 
|---|
|  | 704 | {exp coef:0} = { | 
|---|
|  | 705 | 144.72500000       1.0000000000 | 
|---|
|  | 706 | }) | 
|---|
|  | 707 | (type: [am = s] | 
|---|
|  | 708 | {exp coef:0} = { | 
|---|
|  | 709 | 0.10540000000       1.0000000000 | 
|---|
|  | 710 | }) | 
|---|
|  | 711 | (type: [am = p] | 
|---|
|  | 712 | {exp coef:0} = { | 
|---|
|  | 713 | 99.680000000      0.65660000000E-02 | 
|---|
|  | 714 | 23.150000000      0.45979000000E-01 | 
|---|
|  | 715 | 7.1080000000      0.17341900000 | 
|---|
|  | 716 | }) | 
|---|
|  | 717 | (type: [am = p] | 
|---|
|  | 718 | {exp coef:0} = { | 
|---|
|  | 719 | 2.4410000000       1.0000000000 | 
|---|
|  | 720 | }) | 
|---|
|  | 721 | (type: [am = p] | 
|---|
|  | 722 | {exp coef:0} = { | 
|---|
|  | 723 | 0.83390000000       1.0000000000 | 
|---|
|  | 724 | }) | 
|---|
|  | 725 | (type: [am = p] | 
|---|
|  | 726 | {exp coef:0} = { | 
|---|
|  | 727 | 0.26620000000       1.0000000000 | 
|---|
|  | 728 | }) | 
|---|
|  | 729 | (type: [am = p] | 
|---|
|  | 730 | {exp coef:0} = { | 
|---|
|  | 731 | 22.222000000       1.0000000000 | 
|---|
|  | 732 | }) | 
|---|
|  | 733 | (type: [am = p] | 
|---|
|  | 734 | {exp coef:0} = { | 
|---|
|  | 735 | 65.622000000       1.0000000000 | 
|---|
|  | 736 | }) | 
|---|
|  | 737 | (type: [am = p] | 
|---|
|  | 738 | {exp coef:0} = { | 
|---|
|  | 739 | 193.78000000       1.0000000000 | 
|---|
|  | 740 | }) | 
|---|
|  | 741 | (type: [am = p] | 
|---|
|  | 742 | {exp coef:0} = { | 
|---|
|  | 743 | 0.81780000000E-01   1.0000000000 | 
|---|
|  | 744 | }) | 
|---|
|  | 745 | (type: [(am = d puream = 1)] | 
|---|
|  | 746 | {exp coef:0} = { | 
|---|
|  | 747 | 6.4710000000       1.0000000000 | 
|---|
|  | 748 | }) | 
|---|
|  | 749 | (type: [(am = d puream = 1)] | 
|---|
|  | 750 | {exp coef:0} = { | 
|---|
|  | 751 | 2.2130000000       1.0000000000 | 
|---|
|  | 752 | }) | 
|---|
|  | 753 | (type: [(am = d puream = 1)] | 
|---|
|  | 754 | {exp coef:0} = { | 
|---|
|  | 755 | 0.74700000000       1.0000000000 | 
|---|
|  | 756 | }) | 
|---|
|  | 757 | (type: [(am = d puream = 1)] | 
|---|
|  | 758 | {exp coef:0} = { | 
|---|
|  | 759 | 23.613000000       1.0000000000 | 
|---|
|  | 760 | }) | 
|---|
|  | 761 | (type: [(am = d puream = 1)] | 
|---|
|  | 762 | {exp coef:0} = { | 
|---|
|  | 763 | 90.107000000       1.0000000000 | 
|---|
|  | 764 | }) | 
|---|
|  | 765 | (type: [(am = d puream = 1)] | 
|---|
|  | 766 | {exp coef:0} = { | 
|---|
|  | 767 | 0.27300000000       1.0000000000 | 
|---|
|  | 768 | }) | 
|---|
|  | 769 | (type: [(am = f puream = 1)] | 
|---|
|  | 770 | {exp coef:0} = { | 
|---|
|  | 771 | 4.6570000000       1.0000000000 | 
|---|
|  | 772 | }) | 
|---|
|  | 773 | (type: [(am = f puream = 1)] | 
|---|
|  | 774 | {exp coef:0} = { | 
|---|
|  | 775 | 1.5240000000       1.0000000000 | 
|---|
|  | 776 | }) | 
|---|
|  | 777 | (type: [(am = f puream = 1)] | 
|---|
|  | 778 | {exp coef:0} = { | 
|---|
|  | 779 | 28.830000000       1.0000000000 | 
|---|
|  | 780 | }) | 
|---|
|  | 781 | (type: [(am = f puream = 1)] | 
|---|
|  | 782 | {exp coef:0} = { | 
|---|
|  | 783 | 0.68900000000       1.0000000000 | 
|---|
|  | 784 | }) | 
|---|
|  | 785 | (type: [(am = g puream = 1)] | 
|---|
|  | 786 | {exp coef:0} = { | 
|---|
|  | 787 | 2.9830000000       1.0000000000 | 
|---|
|  | 788 | }) | 
|---|
|  | 789 | (type: [(am = g puream = 1)] | 
|---|
|  | 790 | {exp coef:0} = { | 
|---|
|  | 791 | 1.2240000000       1.0000000000 | 
|---|
|  | 792 | }) | 
|---|
|  | 793 | ] | 
|---|
|  | 794 | % | 
|---|
|  | 795 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
|  | 796 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
|  | 797 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 798 | aluminum: "aug-cc-pCVQZ": [ | 
|---|
|  | 799 | (type: [am = s am = s am = s] | 
|---|
|  | 800 | {exp coef:0 coef:1 coef:2} = { | 
|---|
|  | 801 | 419600.00000      0.27821900000E-04 -0.72375400000E-05  0.16715000000E-05 | 
|---|
|  | 802 | 62830.000000      0.21633000000E-03 -0.56173300000E-04  0.12964100000E-04 | 
|---|
|  | 803 | 14290.000000      0.11375400000E-02 -0.29652800000E-03  0.68510100000E-04 | 
|---|
|  | 804 | 4038.0000000      0.47963500000E-02 -0.12491300000E-02  0.28827400000E-03 | 
|---|
|  | 805 | 1312.0000000      0.17238900000E-01 -0.45510100000E-02  0.10527600000E-02 | 
|---|
|  | 806 | 470.50000000      0.53806600000E-01 -0.14439300000E-01  0.33387800000E-02 | 
|---|
|  | 807 | 181.80000000      0.14132600000     -0.40346400000E-01  0.93921700000E-02 | 
|---|
|  | 808 | 74.460000000      0.28926800000     -0.92261800000E-01  0.21604700000E-01 | 
|---|
|  | 809 | 31.900000000      0.38482500000     -0.16451000000      0.39587300000E-01 | 
|---|
|  | 810 | 13.960000000      0.23285200000     -0.14129600000      0.34918000000E-01 | 
|---|
|  | 811 | 5.1800000000      0.29333000000E-01  0.19536500000     -0.52841500000E-01 | 
|---|
|  | 812 | 2.2650000000     -0.30057400000E-02  0.57247500000     -0.19187800000 | 
|---|
|  | 813 | 0.96640000000      0.16667300000E-02  0.37404100000     -0.25411500000 | 
|---|
|  | 814 | }) | 
|---|
|  | 815 | (type: [am = s] | 
|---|
|  | 816 | {exp coef:0} = { | 
|---|
|  | 817 | 0.24470000000       1.0000000000 | 
|---|
|  | 818 | }) | 
|---|
|  | 819 | (type: [am = s] | 
|---|
|  | 820 | {exp coef:0} = { | 
|---|
|  | 821 | 0.11840000000       1.0000000000 | 
|---|
|  | 822 | }) | 
|---|
|  | 823 | (type: [am = s] | 
|---|
|  | 824 | {exp coef:0} = { | 
|---|
|  | 825 | 0.50210000000E-01   1.0000000000 | 
|---|
|  | 826 | }) | 
|---|
|  | 827 | (type: [am = s] | 
|---|
|  | 828 | {exp coef:0} = { | 
|---|
|  | 829 | 9.7290000000       1.0000000000 | 
|---|
|  | 830 | }) | 
|---|
|  | 831 | (type: [am = s] | 
|---|
|  | 832 | {exp coef:0} = { | 
|---|
|  | 833 | 4.8700000000       1.0000000000 | 
|---|
|  | 834 | }) | 
|---|
|  | 835 | (type: [am = s] | 
|---|
|  | 836 | {exp coef:0} = { | 
|---|
|  | 837 | 2.4370000000       1.0000000000 | 
|---|
|  | 838 | }) | 
|---|
|  | 839 | (type: [am = s] | 
|---|
|  | 840 | {exp coef:0} = { | 
|---|
|  | 841 | 0.18300000000E-01   1.0000000000 | 
|---|
|  | 842 | }) | 
|---|
|  | 843 | (type: [am = p am = p] | 
|---|
|  | 844 | {exp coef:0 coef:1} = { | 
|---|
|  | 845 | 891.30000000      0.49175500000E-03 -0.88869500000E-04 | 
|---|
|  | 846 | 211.30000000      0.41584300000E-02 -0.74582300000E-03 | 
|---|
|  | 847 | 68.280000000      0.21253800000E-01 -0.38702500000E-02 | 
|---|
|  | 848 | 25.700000000      0.76405800000E-01 -0.13935000000E-01 | 
|---|
|  | 849 | 10.630000000      0.19427700000     -0.36686000000E-01 | 
|---|
|  | 850 | 4.6020000000      0.33442800000     -0.62779700000E-01 | 
|---|
|  | 851 | 2.0150000000      0.37502600000     -0.78960200000E-01 | 
|---|
|  | 852 | 0.87060000000      0.20404100000     -0.28858900000E-01 | 
|---|
|  | 853 | }) | 
|---|
|  | 854 | (type: [am = p] | 
|---|
|  | 855 | {exp coef:0} = { | 
|---|
|  | 856 | 0.29720000000       1.0000000000 | 
|---|
|  | 857 | }) | 
|---|
|  | 858 | (type: [am = p] | 
|---|
|  | 859 | {exp coef:0} = { | 
|---|
|  | 860 | 0.11000000000       1.0000000000 | 
|---|
|  | 861 | }) | 
|---|
|  | 862 | (type: [am = p] | 
|---|
|  | 863 | {exp coef:0} = { | 
|---|
|  | 864 | 0.39890000000E-01   1.0000000000 | 
|---|
|  | 865 | }) | 
|---|
|  | 866 | (type: [am = p] | 
|---|
|  | 867 | {exp coef:0} = { | 
|---|
|  | 868 | 10.000000000       1.0000000000 | 
|---|
|  | 869 | }) | 
|---|
|  | 870 | (type: [am = p] | 
|---|
|  | 871 | {exp coef:0} = { | 
|---|
|  | 872 | 4.5140000000       1.0000000000 | 
|---|
|  | 873 | }) | 
|---|
|  | 874 | (type: [am = p] | 
|---|
|  | 875 | {exp coef:0} = { | 
|---|
|  | 876 | 2.0380000000       1.0000000000 | 
|---|
|  | 877 | }) | 
|---|
|  | 878 | (type: [am = p] | 
|---|
|  | 879 | {exp coef:0} = { | 
|---|
|  | 880 | 0.12100000000E-01   1.0000000000 | 
|---|
|  | 881 | }) | 
|---|
|  | 882 | (type: [(am = d puream = 1)] | 
|---|
|  | 883 | {exp coef:0} = { | 
|---|
|  | 884 | 0.80400000000E-01   1.0000000000 | 
|---|
|  | 885 | }) | 
|---|
|  | 886 | (type: [(am = d puream = 1)] | 
|---|
|  | 887 | {exp coef:0} = { | 
|---|
|  | 888 | 0.19900000000       1.0000000000 | 
|---|
|  | 889 | }) | 
|---|
|  | 890 | (type: [(am = d puream = 1)] | 
|---|
|  | 891 | {exp coef:0} = { | 
|---|
|  | 892 | 0.49400000000       1.0000000000 | 
|---|
|  | 893 | }) | 
|---|
|  | 894 | (type: [(am = d puream = 1)] | 
|---|
|  | 895 | {exp coef:0} = { | 
|---|
|  | 896 | 14.835000000       1.0000000000 | 
|---|
|  | 897 | }) | 
|---|
|  | 898 | (type: [(am = d puream = 1)] | 
|---|
|  | 899 | {exp coef:0} = { | 
|---|
|  | 900 | 5.6370000000       1.0000000000 | 
|---|
|  | 901 | }) | 
|---|
|  | 902 | (type: [(am = d puream = 1)] | 
|---|
|  | 903 | {exp coef:0} = { | 
|---|
|  | 904 | 2.1420000000       1.0000000000 | 
|---|
|  | 905 | }) | 
|---|
|  | 906 | (type: [(am = d puream = 1)] | 
|---|
|  | 907 | {exp coef:0} = { | 
|---|
|  | 908 | 0.28200000000E-01   1.0000000000 | 
|---|
|  | 909 | }) | 
|---|
|  | 910 | (type: [(am = f puream = 1)] | 
|---|
|  | 911 | {exp coef:0} = { | 
|---|
|  | 912 | 0.15400000000       1.0000000000 | 
|---|
|  | 913 | }) | 
|---|
|  | 914 | (type: [(am = f puream = 1)] | 
|---|
|  | 915 | {exp coef:0} = { | 
|---|
|  | 916 | 0.40100000000       1.0000000000 | 
|---|
|  | 917 | }) | 
|---|
|  | 918 | (type: [(am = f puream = 1)] | 
|---|
|  | 919 | {exp coef:0} = { | 
|---|
|  | 920 | 9.8530000000       1.0000000000 | 
|---|
|  | 921 | }) | 
|---|
|  | 922 | (type: [(am = f puream = 1)] | 
|---|
|  | 923 | {exp coef:0} = { | 
|---|
|  | 924 | 3.5250000000       1.0000000000 | 
|---|
|  | 925 | }) | 
|---|
|  | 926 | (type: [(am = f puream = 1)] | 
|---|
|  | 927 | {exp coef:0} = { | 
|---|
|  | 928 | 0.58200000000E-01   1.0000000000 | 
|---|
|  | 929 | }) | 
|---|
|  | 930 | (type: [(am = g puream = 1)] | 
|---|
|  | 931 | {exp coef:0} = { | 
|---|
|  | 932 | 0.35700000000       1.0000000000 | 
|---|
|  | 933 | }) | 
|---|
|  | 934 | (type: [(am = g puream = 1)] | 
|---|
|  | 935 | {exp coef:0} = { | 
|---|
|  | 936 | 6.8940000000       1.0000000000 | 
|---|
|  | 937 | }) | 
|---|
|  | 938 | (type: [(am = g puream = 1)] | 
|---|
|  | 939 | {exp coef:0} = { | 
|---|
|  | 940 | 0.15300000000       1.0000000000 | 
|---|
|  | 941 | }) | 
|---|
|  | 942 | ] | 
|---|
|  | 943 | % | 
|---|
|  | 944 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
|  | 945 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
|  | 946 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 947 | silicon: "aug-cc-pCVQZ": [ | 
|---|
|  | 948 | (type: [am = s am = s am = s] | 
|---|
|  | 949 | {exp coef:0 coef:1 coef:2} = { | 
|---|
|  | 950 | 513000.00000      0.26092000000E-04 -0.69488000000E-05  0.17806800000E-05 | 
|---|
|  | 951 | 76820.000000      0.20290500000E-03 -0.53964100000E-04  0.13814800000E-04 | 
|---|
|  | 952 | 17470.000000      0.10671500000E-02 -0.28471600000E-03  0.73000500000E-04 | 
|---|
|  | 953 | 4935.0000000      0.45059700000E-02 -0.12020300000E-02  0.30766600000E-03 | 
|---|
|  | 954 | 1602.0000000      0.16235900000E-01 -0.43839700000E-02  0.11256300000E-02 | 
|---|
|  | 955 | 574.10000000      0.50891300000E-01 -0.13977600000E-01  0.35843500000E-02 | 
|---|
|  | 956 | 221.50000000      0.13515500000     -0.39351600000E-01  0.10172800000E-01 | 
|---|
|  | 957 | 90.540000000      0.28129200000     -0.91428300000E-01  0.23752000000E-01 | 
|---|
|  | 958 | 38.740000000      0.38533600000     -0.16560900000      0.44348300000E-01 | 
|---|
|  | 959 | 16.950000000      0.24565100000     -0.15250500000      0.41904100000E-01 | 
|---|
|  | 960 | 6.4520000000      0.34314500000E-01  0.16852400000     -0.50250400000E-01 | 
|---|
|  | 961 | 2.8740000000     -0.33488400000E-02  0.56928400000     -0.21657800000 | 
|---|
|  | 962 | 1.2500000000      0.18762500000E-02  0.39805600000     -0.28644800000 | 
|---|
|  | 963 | }) | 
|---|
|  | 964 | (type: [am = s] | 
|---|
|  | 965 | {exp coef:0} = { | 
|---|
|  | 966 | 0.35990000000       1.0000000000 | 
|---|
|  | 967 | }) | 
|---|
|  | 968 | (type: [am = s] | 
|---|
|  | 969 | {exp coef:0} = { | 
|---|
|  | 970 | 0.16990000000       1.0000000000 | 
|---|
|  | 971 | }) | 
|---|
|  | 972 | (type: [am = s] | 
|---|
|  | 973 | {exp coef:0} = { | 
|---|
|  | 974 | 0.70660000000E-01   1.0000000000 | 
|---|
|  | 975 | }) | 
|---|
|  | 976 | (type: [am = s] | 
|---|
|  | 977 | {exp coef:0} = { | 
|---|
|  | 978 | 12.164000000       1.0000000000 | 
|---|
|  | 979 | }) | 
|---|
|  | 980 | (type: [am = s] | 
|---|
|  | 981 | {exp coef:0} = { | 
|---|
|  | 982 | 6.1870000000       1.0000000000 | 
|---|
|  | 983 | }) | 
|---|
|  | 984 | (type: [am = s] | 
|---|
|  | 985 | {exp coef:0} = { | 
|---|
|  | 986 | 3.1470000000       1.0000000000 | 
|---|
|  | 987 | }) | 
|---|
|  | 988 | (type: [am = s] | 
|---|
|  | 989 | {exp coef:0} = { | 
|---|
|  | 990 | 0.27500000000E-01   1.0000000000 | 
|---|
|  | 991 | }) | 
|---|
|  | 992 | (type: [am = p am = p] | 
|---|
|  | 993 | {exp coef:0 coef:1} = { | 
|---|
|  | 994 | 1122.0000000      0.44814300000E-03 -0.96488300000E-04 | 
|---|
|  | 995 | 266.00000000      0.38163900000E-02 -0.81197100000E-03 | 
|---|
|  | 996 | 85.920000000      0.19810500000E-01 -0.43008700000E-02 | 
|---|
|  | 997 | 32.330000000      0.72701700000E-01 -0.15750200000E-01 | 
|---|
|  | 998 | 13.370000000      0.18983900000     -0.42954100000E-01 | 
|---|
|  | 999 | 5.8000000000      0.33567200000     -0.75257400000E-01 | 
|---|
|  | 1000 | 2.5590000000      0.37936500000     -0.97144600000E-01 | 
|---|
|  | 1001 | 1.1240000000      0.20119300000     -0.22750700000E-01 | 
|---|
|  | 1002 | }) | 
|---|
|  | 1003 | (type: [am = p] | 
|---|
|  | 1004 | {exp coef:0} = { | 
|---|
|  | 1005 | 0.39880000000       1.0000000000 | 
|---|
|  | 1006 | }) | 
|---|
|  | 1007 | (type: [am = p] | 
|---|
|  | 1008 | {exp coef:0} = { | 
|---|
|  | 1009 | 0.15330000000       1.0000000000 | 
|---|
|  | 1010 | }) | 
|---|
|  | 1011 | (type: [am = p] | 
|---|
|  | 1012 | {exp coef:0} = { | 
|---|
|  | 1013 | 0.57280000000E-01   1.0000000000 | 
|---|
|  | 1014 | }) | 
|---|
|  | 1015 | (type: [am = p] | 
|---|
|  | 1016 | {exp coef:0} = { | 
|---|
|  | 1017 | 12.646000000       1.0000000000 | 
|---|
|  | 1018 | }) | 
|---|
|  | 1019 | (type: [am = p] | 
|---|
|  | 1020 | {exp coef:0} = { | 
|---|
|  | 1021 | 5.7470000000       1.0000000000 | 
|---|
|  | 1022 | }) | 
|---|
|  | 1023 | (type: [am = p] | 
|---|
|  | 1024 | {exp coef:0} = { | 
|---|
|  | 1025 | 2.6120000000       1.0000000000 | 
|---|
|  | 1026 | }) | 
|---|
|  | 1027 | (type: [am = p] | 
|---|
|  | 1028 | {exp coef:0} = { | 
|---|
|  | 1029 | 0.20000000000E-01   1.0000000000 | 
|---|
|  | 1030 | }) | 
|---|
|  | 1031 | (type: [(am = d puream = 1)] | 
|---|
|  | 1032 | {exp coef:0} = { | 
|---|
|  | 1033 | 0.12000000000       1.0000000000 | 
|---|
|  | 1034 | }) | 
|---|
|  | 1035 | (type: [(am = d puream = 1)] | 
|---|
|  | 1036 | {exp coef:0} = { | 
|---|
|  | 1037 | 0.30200000000       1.0000000000 | 
|---|
|  | 1038 | }) | 
|---|
|  | 1039 | (type: [(am = d puream = 1)] | 
|---|
|  | 1040 | {exp coef:0} = { | 
|---|
|  | 1041 | 0.76000000000       1.0000000000 | 
|---|
|  | 1042 | }) | 
|---|
|  | 1043 | (type: [(am = d puream = 1)] | 
|---|
|  | 1044 | {exp coef:0} = { | 
|---|
|  | 1045 | 19.015000000       1.0000000000 | 
|---|
|  | 1046 | }) | 
|---|
|  | 1047 | (type: [(am = d puream = 1)] | 
|---|
|  | 1048 | {exp coef:0} = { | 
|---|
|  | 1049 | 7.4010000000       1.0000000000 | 
|---|
|  | 1050 | }) | 
|---|
|  | 1051 | (type: [(am = d puream = 1)] | 
|---|
|  | 1052 | {exp coef:0} = { | 
|---|
|  | 1053 | 2.8810000000       1.0000000000 | 
|---|
|  | 1054 | }) | 
|---|
|  | 1055 | (type: [(am = d puream = 1)] | 
|---|
|  | 1056 | {exp coef:0} = { | 
|---|
|  | 1057 | 0.43500000000E-01   1.0000000000 | 
|---|
|  | 1058 | }) | 
|---|
|  | 1059 | (type: [(am = f puream = 1)] | 
|---|
|  | 1060 | {exp coef:0} = { | 
|---|
|  | 1061 | 0.21200000000       1.0000000000 | 
|---|
|  | 1062 | }) | 
|---|
|  | 1063 | (type: [(am = f puream = 1)] | 
|---|
|  | 1064 | {exp coef:0} = { | 
|---|
|  | 1065 | 0.54100000000       1.0000000000 | 
|---|
|  | 1066 | }) | 
|---|
|  | 1067 | (type: [(am = f puream = 1)] | 
|---|
|  | 1068 | {exp coef:0} = { | 
|---|
|  | 1069 | 11.925000000       1.0000000000 | 
|---|
|  | 1070 | }) | 
|---|
|  | 1071 | (type: [(am = f puream = 1)] | 
|---|
|  | 1072 | {exp coef:0} = { | 
|---|
|  | 1073 | 4.3040000000       1.0000000000 | 
|---|
|  | 1074 | }) | 
|---|
|  | 1075 | (type: [(am = f puream = 1)] | 
|---|
|  | 1076 | {exp coef:0} = { | 
|---|
|  | 1077 | 0.84600000000E-01   1.0000000000 | 
|---|
|  | 1078 | }) | 
|---|
|  | 1079 | (type: [(am = g puream = 1)] | 
|---|
|  | 1080 | {exp coef:0} = { | 
|---|
|  | 1081 | 0.46100000000       1.0000000000 | 
|---|
|  | 1082 | }) | 
|---|
|  | 1083 | (type: [(am = g puream = 1)] | 
|---|
|  | 1084 | {exp coef:0} = { | 
|---|
|  | 1085 | 8.5770000000       1.0000000000 | 
|---|
|  | 1086 | }) | 
|---|
|  | 1087 | (type: [(am = g puream = 1)] | 
|---|
|  | 1088 | {exp coef:0} = { | 
|---|
|  | 1089 | 0.21200000000       1.0000000000 | 
|---|
|  | 1090 | }) | 
|---|
|  | 1091 | ] | 
|---|
|  | 1092 | % | 
|---|
|  | 1093 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
|  | 1094 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
|  | 1095 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 1096 | phosphorus: "aug-cc-pCVQZ": [ | 
|---|
|  | 1097 | (type: [am = s am = s am = s] | 
|---|
|  | 1098 | {exp coef:0 coef:1 coef:2} = { | 
|---|
|  | 1099 | 615200.00000      0.24745000000E-04 -0.67220500000E-05  0.18474000000E-05 | 
|---|
|  | 1100 | 92120.000000      0.19246500000E-03 -0.52231100000E-04  0.14338000000E-04 | 
|---|
|  | 1101 | 20950.000000      0.10120200000E-02 -0.27536100000E-03  0.75722800000E-04 | 
|---|
|  | 1102 | 5920.0000000      0.42726100000E-02 -0.11630700000E-02  0.31920500000E-03 | 
|---|
|  | 1103 | 1922.0000000      0.15416100000E-01 -0.42428100000E-02  0.11685100000E-02 | 
|---|
|  | 1104 | 688.00000000      0.48597600000E-01 -0.13611400000E-01  0.37426700000E-02 | 
|---|
|  | 1105 | 265.00000000      0.13006000000     -0.38511400000E-01  0.10681700000E-01 | 
|---|
|  | 1106 | 108.20000000      0.27451400000     -0.90664300000E-01  0.25265700000E-01 | 
|---|
|  | 1107 | 46.220000000      0.38540200000     -0.16658400000      0.47928300000E-01 | 
|---|
|  | 1108 | 20.230000000      0.25593400000     -0.16144700000      0.47709600000E-01 | 
|---|
|  | 1109 | 7.8590000000      0.39123700000E-01  0.14678100000     -0.46652500000E-01 | 
|---|
|  | 1110 | 3.5470000000     -0.36801000000E-02  0.56668200000     -0.23496800000 | 
|---|
|  | 1111 | 1.5640000000      0.20821100000E-02  0.41643300000     -0.31133700000 | 
|---|
|  | 1112 | }) | 
|---|
|  | 1113 | (type: [am = s] | 
|---|
|  | 1114 | {exp coef:0} = { | 
|---|
|  | 1115 | 0.48880000000       1.0000000000 | 
|---|
|  | 1116 | }) | 
|---|
|  | 1117 | (type: [am = s] | 
|---|
|  | 1118 | {exp coef:0} = { | 
|---|
|  | 1119 | 0.22660000000       1.0000000000 | 
|---|
|  | 1120 | }) | 
|---|
|  | 1121 | (type: [am = s] | 
|---|
|  | 1122 | {exp coef:0} = { | 
|---|
|  | 1123 | 0.93310000000E-01   1.0000000000 | 
|---|
|  | 1124 | }) | 
|---|
|  | 1125 | (type: [am = s] | 
|---|
|  | 1126 | {exp coef:0} = { | 
|---|
|  | 1127 | 14.831000000       1.0000000000 | 
|---|
|  | 1128 | }) | 
|---|
|  | 1129 | (type: [am = s] | 
|---|
|  | 1130 | {exp coef:0} = { | 
|---|
|  | 1131 | 7.6400000000       1.0000000000 | 
|---|
|  | 1132 | }) | 
|---|
|  | 1133 | (type: [am = s] | 
|---|
|  | 1134 | {exp coef:0} = { | 
|---|
|  | 1135 | 3.9350000000       1.0000000000 | 
|---|
|  | 1136 | }) | 
|---|
|  | 1137 | (type: [am = s] | 
|---|
|  | 1138 | {exp coef:0} = { | 
|---|
|  | 1139 | 0.35400000000E-01   1.0000000000 | 
|---|
|  | 1140 | }) | 
|---|
|  | 1141 | (type: [am = p am = p] | 
|---|
|  | 1142 | {exp coef:0 coef:1} = { | 
|---|
|  | 1143 | 1367.0000000      0.42101500000E-03 -0.10082700000E-03 | 
|---|
|  | 1144 | 324.00000000      0.36098500000E-02 -0.85449900000E-03 | 
|---|
|  | 1145 | 104.60000000      0.18921700000E-01 -0.45711600000E-02 | 
|---|
|  | 1146 | 39.370000000      0.70556000000E-01 -0.17032700000E-01 | 
|---|
|  | 1147 | 16.260000000      0.18815700000     -0.47520400000E-01 | 
|---|
|  | 1148 | 7.0560000000      0.33870900000     -0.85278600000E-01 | 
|---|
|  | 1149 | 3.1300000000      0.38194300000     -0.10967600000 | 
|---|
|  | 1150 | 1.3940000000      0.19526100000     -0.16118100000E-01 | 
|---|
|  | 1151 | }) | 
|---|
|  | 1152 | (type: [am = p] | 
|---|
|  | 1153 | {exp coef:0} = { | 
|---|
|  | 1154 | 0.51790000000       1.0000000000 | 
|---|
|  | 1155 | }) | 
|---|
|  | 1156 | (type: [am = p] | 
|---|
|  | 1157 | {exp coef:0} = { | 
|---|
|  | 1158 | 0.20320000000       1.0000000000 | 
|---|
|  | 1159 | }) | 
|---|
|  | 1160 | (type: [am = p] | 
|---|
|  | 1161 | {exp coef:0} = { | 
|---|
|  | 1162 | 0.76980000000E-01   1.0000000000 | 
|---|
|  | 1163 | }) | 
|---|
|  | 1164 | (type: [am = p] | 
|---|
|  | 1165 | {exp coef:0} = { | 
|---|
|  | 1166 | 15.523000000       1.0000000000 | 
|---|
|  | 1167 | }) | 
|---|
|  | 1168 | (type: [am = p] | 
|---|
|  | 1169 | {exp coef:0} = { | 
|---|
|  | 1170 | 7.0730000000       1.0000000000 | 
|---|
|  | 1171 | }) | 
|---|
|  | 1172 | (type: [am = p] | 
|---|
|  | 1173 | {exp coef:0} = { | 
|---|
|  | 1174 | 3.2230000000       1.0000000000 | 
|---|
|  | 1175 | }) | 
|---|
|  | 1176 | (type: [am = p] | 
|---|
|  | 1177 | {exp coef:0} = { | 
|---|
|  | 1178 | 0.27200000000E-01   1.0000000000 | 
|---|
|  | 1179 | }) | 
|---|
|  | 1180 | (type: [(am = d puream = 1)] | 
|---|
|  | 1181 | {exp coef:0} = { | 
|---|
|  | 1182 | 0.16500000000       1.0000000000 | 
|---|
|  | 1183 | }) | 
|---|
|  | 1184 | (type: [(am = d puream = 1)] | 
|---|
|  | 1185 | {exp coef:0} = { | 
|---|
|  | 1186 | 0.41300000000       1.0000000000 | 
|---|
|  | 1187 | }) | 
|---|
|  | 1188 | (type: [(am = d puream = 1)] | 
|---|
|  | 1189 | {exp coef:0} = { | 
|---|
|  | 1190 | 1.0360000000       1.0000000000 | 
|---|
|  | 1191 | }) | 
|---|
|  | 1192 | (type: [(am = d puream = 1)] | 
|---|
|  | 1193 | {exp coef:0} = { | 
|---|
|  | 1194 | 23.417000000       1.0000000000 | 
|---|
|  | 1195 | }) | 
|---|
|  | 1196 | (type: [(am = d puream = 1)] | 
|---|
|  | 1197 | {exp coef:0} = { | 
|---|
|  | 1198 | 9.2500000000       1.0000000000 | 
|---|
|  | 1199 | }) | 
|---|
|  | 1200 | (type: [(am = d puream = 1)] | 
|---|
|  | 1201 | {exp coef:0} = { | 
|---|
|  | 1202 | 3.6540000000       1.0000000000 | 
|---|
|  | 1203 | }) | 
|---|
|  | 1204 | (type: [(am = d puream = 1)] | 
|---|
|  | 1205 | {exp coef:0} = { | 
|---|
|  | 1206 | 0.59400000000E-01   1.0000000000 | 
|---|
|  | 1207 | }) | 
|---|
|  | 1208 | (type: [(am = f puream = 1)] | 
|---|
|  | 1209 | {exp coef:0} = { | 
|---|
|  | 1210 | 0.28000000000       1.0000000000 | 
|---|
|  | 1211 | }) | 
|---|
|  | 1212 | (type: [(am = f puream = 1)] | 
|---|
|  | 1213 | {exp coef:0} = { | 
|---|
|  | 1214 | 0.70300000000       1.0000000000 | 
|---|
|  | 1215 | }) | 
|---|
|  | 1216 | (type: [(am = f puream = 1)] | 
|---|
|  | 1217 | {exp coef:0} = { | 
|---|
|  | 1218 | 14.207000000       1.0000000000 | 
|---|
|  | 1219 | }) | 
|---|
|  | 1220 | (type: [(am = f puream = 1)] | 
|---|
|  | 1221 | {exp coef:0} = { | 
|---|
|  | 1222 | 5.1610000000       1.0000000000 | 
|---|
|  | 1223 | }) | 
|---|
|  | 1224 | (type: [(am = f puream = 1)] | 
|---|
|  | 1225 | {exp coef:0} = { | 
|---|
|  | 1226 | 0.10900000000       1.0000000000 | 
|---|
|  | 1227 | }) | 
|---|
|  | 1228 | (type: [(am = g puream = 1)] | 
|---|
|  | 1229 | {exp coef:0} = { | 
|---|
|  | 1230 | 0.59700000000       1.0000000000 | 
|---|
|  | 1231 | }) | 
|---|
|  | 1232 | (type: [(am = g puream = 1)] | 
|---|
|  | 1233 | {exp coef:0} = { | 
|---|
|  | 1234 | 10.448000000       1.0000000000 | 
|---|
|  | 1235 | }) | 
|---|
|  | 1236 | (type: [(am = g puream = 1)] | 
|---|
|  | 1237 | {exp coef:0} = { | 
|---|
|  | 1238 | 0.25000000000       1.0000000000 | 
|---|
|  | 1239 | }) | 
|---|
|  | 1240 | ] | 
|---|
|  | 1241 | % | 
|---|
|  | 1242 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
|  | 1243 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
|  | 1244 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 1245 | sulfur: "aug-cc-pCVQZ": [ | 
|---|
|  | 1246 | (type: [am = s am = s am = s] | 
|---|
|  | 1247 | {exp coef:0 coef:1 coef:2} = { | 
|---|
|  | 1248 | 727800.00000      0.23602500000E-04 -0.65217900000E-05  0.18940600000E-05 | 
|---|
|  | 1249 | 109000.00000      0.18348200000E-03 -0.50663100000E-04  0.14694800000E-04 | 
|---|
|  | 1250 | 24800.000000      0.96427800000E-03 -0.26683300000E-03  0.77546000000E-04 | 
|---|
|  | 1251 | 7014.0000000      0.40653700000E-02 -0.11260100000E-02  0.32650900000E-03 | 
|---|
|  | 1252 | 2278.0000000      0.14697300000E-01 -0.41118600000E-02  0.11968600000E-02 | 
|---|
|  | 1253 | 814.70000000      0.46508100000E-01 -0.13245400000E-01  0.38479900000E-02 | 
|---|
|  | 1254 | 313.40000000      0.12550800000     -0.37700400000E-01  0.11053900000E-01 | 
|---|
|  | 1255 | 127.70000000      0.26843300000     -0.89855400000E-01  0.26464500000E-01 | 
|---|
|  | 1256 | 54.480000000      0.38480900000     -0.16709800000      0.50877100000E-01 | 
|---|
|  | 1257 | 23.850000000      0.26537200000     -0.16935400000      0.53003000000E-01 | 
|---|
|  | 1258 | 9.4280000000      0.43732600000E-01  0.12782400000     -0.42551800000E-01 | 
|---|
|  | 1259 | 4.2900000000     -0.37880700000E-02  0.56486200000     -0.25085300000 | 
|---|
|  | 1260 | 1.9090000000      0.21808300000E-02  0.43176700000     -0.33315200000 | 
|---|
|  | 1261 | }) | 
|---|
|  | 1262 | (type: [am = s] | 
|---|
|  | 1263 | {exp coef:0} = { | 
|---|
|  | 1264 | 0.62700000000       1.0000000000 | 
|---|
|  | 1265 | }) | 
|---|
|  | 1266 | (type: [am = s] | 
|---|
|  | 1267 | {exp coef:0} = { | 
|---|
|  | 1268 | 0.28730000000       1.0000000000 | 
|---|
|  | 1269 | }) | 
|---|
|  | 1270 | (type: [am = s] | 
|---|
|  | 1271 | {exp coef:0} = { | 
|---|
|  | 1272 | 0.11720000000       1.0000000000 | 
|---|
|  | 1273 | }) | 
|---|
|  | 1274 | (type: [am = s] | 
|---|
|  | 1275 | {exp coef:0} = { | 
|---|
|  | 1276 | 17.599000000       1.0000000000 | 
|---|
|  | 1277 | }) | 
|---|
|  | 1278 | (type: [am = s] | 
|---|
|  | 1279 | {exp coef:0} = { | 
|---|
|  | 1280 | 9.1860000000       1.0000000000 | 
|---|
|  | 1281 | }) | 
|---|
|  | 1282 | (type: [am = s] | 
|---|
|  | 1283 | {exp coef:0} = { | 
|---|
|  | 1284 | 4.7950000000       1.0000000000 | 
|---|
|  | 1285 | }) | 
|---|
|  | 1286 | (type: [am = s] | 
|---|
|  | 1287 | {exp coef:0} = { | 
|---|
|  | 1288 | 0.42800000000E-01   1.0000000000 | 
|---|
|  | 1289 | }) | 
|---|
|  | 1290 | (type: [am = p am = p] | 
|---|
|  | 1291 | {exp coef:0 coef:1} = { | 
|---|
|  | 1292 | 1546.0000000      0.44118300000E-03 -0.11311000000E-03 | 
|---|
|  | 1293 | 366.40000000      0.37757100000E-02 -0.95858100000E-03 | 
|---|
|  | 1294 | 118.40000000      0.19836000000E-01 -0.51347100000E-02 | 
|---|
|  | 1295 | 44.530000000      0.74206300000E-01 -0.19264100000E-01 | 
|---|
|  | 1296 | 18.380000000      0.19732700000     -0.53598000000E-01 | 
|---|
|  | 1297 | 7.9650000000      0.35185100000     -0.96033300000E-01 | 
|---|
|  | 1298 | 3.5410000000      0.37868700000     -0.11818300000 | 
|---|
|  | 1299 | 1.5910000000      0.17093100000      0.92319400000E-02 | 
|---|
|  | 1300 | }) | 
|---|
|  | 1301 | (type: [am = p] | 
|---|
|  | 1302 | {exp coef:0} = { | 
|---|
|  | 1303 | 0.62050000000       1.0000000000 | 
|---|
|  | 1304 | }) | 
|---|
|  | 1305 | (type: [am = p] | 
|---|
|  | 1306 | {exp coef:0} = { | 
|---|
|  | 1307 | 0.24200000000       1.0000000000 | 
|---|
|  | 1308 | }) | 
|---|
|  | 1309 | (type: [am = p] | 
|---|
|  | 1310 | {exp coef:0} = { | 
|---|
|  | 1311 | 0.90140000000E-01   1.0000000000 | 
|---|
|  | 1312 | }) | 
|---|
|  | 1313 | (type: [am = p] | 
|---|
|  | 1314 | {exp coef:0} = { | 
|---|
|  | 1315 | 18.127000000       1.0000000000 | 
|---|
|  | 1316 | }) | 
|---|
|  | 1317 | (type: [am = p] | 
|---|
|  | 1318 | {exp coef:0} = { | 
|---|
|  | 1319 | 8.2190000000       1.0000000000 | 
|---|
|  | 1320 | }) | 
|---|
|  | 1321 | (type: [am = p] | 
|---|
|  | 1322 | {exp coef:0} = { | 
|---|
|  | 1323 | 3.7260000000       1.0000000000 | 
|---|
|  | 1324 | }) | 
|---|
|  | 1325 | (type: [am = p] | 
|---|
|  | 1326 | {exp coef:0} = { | 
|---|
|  | 1327 | 0.31700000000E-01   1.0000000000 | 
|---|
|  | 1328 | }) | 
|---|
|  | 1329 | (type: [(am = d puream = 1)] | 
|---|
|  | 1330 | {exp coef:0} = { | 
|---|
|  | 1331 | 0.20300000000       1.0000000000 | 
|---|
|  | 1332 | }) | 
|---|
|  | 1333 | (type: [(am = d puream = 1)] | 
|---|
|  | 1334 | {exp coef:0} = { | 
|---|
|  | 1335 | 0.50400000000       1.0000000000 | 
|---|
|  | 1336 | }) | 
|---|
|  | 1337 | (type: [(am = d puream = 1)] | 
|---|
|  | 1338 | {exp coef:0} = { | 
|---|
|  | 1339 | 1.2500000000       1.0000000000 | 
|---|
|  | 1340 | }) | 
|---|
|  | 1341 | (type: [(am = d puream = 1)] | 
|---|
|  | 1342 | {exp coef:0} = { | 
|---|
|  | 1343 | 27.417000000       1.0000000000 | 
|---|
|  | 1344 | }) | 
|---|
|  | 1345 | (type: [(am = d puream = 1)] | 
|---|
|  | 1346 | {exp coef:0} = { | 
|---|
|  | 1347 | 10.893000000       1.0000000000 | 
|---|
|  | 1348 | }) | 
|---|
|  | 1349 | (type: [(am = d puream = 1)] | 
|---|
|  | 1350 | {exp coef:0} = { | 
|---|
|  | 1351 | 4.3190000000       1.0000000000 | 
|---|
|  | 1352 | }) | 
|---|
|  | 1353 | (type: [(am = d puream = 1)] | 
|---|
|  | 1354 | {exp coef:0} = { | 
|---|
|  | 1355 | 0.74800000000E-01   1.0000000000 | 
|---|
|  | 1356 | }) | 
|---|
|  | 1357 | (type: [(am = f puream = 1)] | 
|---|
|  | 1358 | {exp coef:0} = { | 
|---|
|  | 1359 | 0.33500000000       1.0000000000 | 
|---|
|  | 1360 | }) | 
|---|
|  | 1361 | (type: [(am = f puream = 1)] | 
|---|
|  | 1362 | {exp coef:0} = { | 
|---|
|  | 1363 | 0.86900000000       1.0000000000 | 
|---|
|  | 1364 | }) | 
|---|
|  | 1365 | (type: [(am = f puream = 1)] | 
|---|
|  | 1366 | {exp coef:0} = { | 
|---|
|  | 1367 | 16.535000000       1.0000000000 | 
|---|
|  | 1368 | }) | 
|---|
|  | 1369 | (type: [(am = f puream = 1)] | 
|---|
|  | 1370 | {exp coef:0} = { | 
|---|
|  | 1371 | 6.0080000000       1.0000000000 | 
|---|
|  | 1372 | }) | 
|---|
|  | 1373 | (type: [(am = f puream = 1)] | 
|---|
|  | 1374 | {exp coef:0} = { | 
|---|
|  | 1375 | 0.14000000000       1.0000000000 | 
|---|
|  | 1376 | }) | 
|---|
|  | 1377 | (type: [(am = g puream = 1)] | 
|---|
|  | 1378 | {exp coef:0} = { | 
|---|
|  | 1379 | 0.68300000000       1.0000000000 | 
|---|
|  | 1380 | }) | 
|---|
|  | 1381 | (type: [(am = g puream = 1)] | 
|---|
|  | 1382 | {exp coef:0} = { | 
|---|
|  | 1383 | 12.518000000       1.0000000000 | 
|---|
|  | 1384 | }) | 
|---|
|  | 1385 | (type: [(am = g puream = 1)] | 
|---|
|  | 1386 | {exp coef:0} = { | 
|---|
|  | 1387 | 0.29700000000       1.0000000000 | 
|---|
|  | 1388 | }) | 
|---|
|  | 1389 | ] | 
|---|
|  | 1390 | % | 
|---|
|  | 1391 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
|  | 1392 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
|  | 1393 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 1394 | chlorine: "aug-cc-pCVQZ": [ | 
|---|
|  | 1395 | (type: [am = s am = s am = s] | 
|---|
|  | 1396 | {exp coef:0 coef:1 coef:2} = { | 
|---|
|  | 1397 | 834900.00000      0.23168800000E-04 -0.64964900000E-05  0.19664500000E-05 | 
|---|
|  | 1398 | 125000.00000      0.18015400000E-03 -0.50489500000E-04  0.15262000000E-04 | 
|---|
|  | 1399 | 28430.000000      0.94778200000E-03 -0.26611300000E-03  0.80608600000E-04 | 
|---|
|  | 1400 | 8033.0000000      0.40013900000E-02 -0.11249900000E-02  0.33996000000E-03 | 
|---|
|  | 1401 | 2608.0000000      0.14462900000E-01 -0.41049700000E-02  0.12455100000E-02 | 
|---|
|  | 1402 | 933.90000000      0.45658600000E-01 -0.13198700000E-01  0.39961200000E-02 | 
|---|
|  | 1403 | 360.00000000      0.12324800000     -0.37534200000E-01  0.11475100000E-01 | 
|---|
|  | 1404 | 147.00000000      0.26436900000     -0.89723300000E-01  0.27550400000E-01 | 
|---|
|  | 1405 | 62.880000000      0.38298900000     -0.16767100000      0.53291700000E-01 | 
|---|
|  | 1406 | 27.600000000      0.27093400000     -0.17476300000      0.57124600000E-01 | 
|---|
|  | 1407 | 11.080000000      0.47140400000E-01  0.11490900000     -0.39520100000E-01 | 
|---|
|  | 1408 | 5.0750000000     -0.37176600000E-02  0.56361800000     -0.26434300000 | 
|---|
|  | 1409 | 2.2780000000      0.21915800000E-02  0.44160600000     -0.34929100000 | 
|---|
|  | 1410 | }) | 
|---|
|  | 1411 | (type: [am = s] | 
|---|
|  | 1412 | {exp coef:0} = { | 
|---|
|  | 1413 | 0.77750000000       1.0000000000 | 
|---|
|  | 1414 | }) | 
|---|
|  | 1415 | (type: [am = s] | 
|---|
|  | 1416 | {exp coef:0} = { | 
|---|
|  | 1417 | 0.35270000000       1.0000000000 | 
|---|
|  | 1418 | }) | 
|---|
|  | 1419 | (type: [am = s] | 
|---|
|  | 1420 | {exp coef:0} = { | 
|---|
|  | 1421 | 0.14310000000       1.0000000000 | 
|---|
|  | 1422 | }) | 
|---|
|  | 1423 | (type: [am = s] | 
|---|
|  | 1424 | {exp coef:0} = { | 
|---|
|  | 1425 | 20.689000000       1.0000000000 | 
|---|
|  | 1426 | }) | 
|---|
|  | 1427 | (type: [am = s] | 
|---|
|  | 1428 | {exp coef:0} = { | 
|---|
|  | 1429 | 10.880000000       1.0000000000 | 
|---|
|  | 1430 | }) | 
|---|
|  | 1431 | (type: [am = s] | 
|---|
|  | 1432 | {exp coef:0} = { | 
|---|
|  | 1433 | 5.7220000000       1.0000000000 | 
|---|
|  | 1434 | }) | 
|---|
|  | 1435 | (type: [am = s] | 
|---|
|  | 1436 | {exp coef:0} = { | 
|---|
|  | 1437 | 0.51900000000E-01   1.0000000000 | 
|---|
|  | 1438 | }) | 
|---|
|  | 1439 | (type: [am = p am = p] | 
|---|
|  | 1440 | {exp coef:0 coef:1} = { | 
|---|
|  | 1441 | 1703.0000000      0.47403900000E-03 -0.12826600000E-03 | 
|---|
|  | 1442 | 403.60000000      0.40641200000E-02 -0.10935600000E-02 | 
|---|
|  | 1443 | 130.30000000      0.21335500000E-01 -0.58342900000E-02 | 
|---|
|  | 1444 | 49.050000000      0.79461100000E-01 -0.21925800000E-01 | 
|---|
|  | 1445 | 20.260000000      0.20892700000     -0.60138500000E-01 | 
|---|
|  | 1446 | 8.7870000000      0.36494500000     -0.10692900000 | 
|---|
|  | 1447 | 3.9190000000      0.37172500000     -0.12245400000 | 
|---|
|  | 1448 | 1.7650000000      0.14629200000      0.38361900000E-01 | 
|---|
|  | 1449 | }) | 
|---|
|  | 1450 | (type: [am = p] | 
|---|
|  | 1451 | {exp coef:0} = { | 
|---|
|  | 1452 | 0.72070000000       1.0000000000 | 
|---|
|  | 1453 | }) | 
|---|
|  | 1454 | (type: [am = p] | 
|---|
|  | 1455 | {exp coef:0} = { | 
|---|
|  | 1456 | 0.28390000000       1.0000000000 | 
|---|
|  | 1457 | }) | 
|---|
|  | 1458 | (type: [am = p] | 
|---|
|  | 1459 | {exp coef:0} = { | 
|---|
|  | 1460 | 0.10600000000       1.0000000000 | 
|---|
|  | 1461 | }) | 
|---|
|  | 1462 | (type: [am = p] | 
|---|
|  | 1463 | {exp coef:0} = { | 
|---|
|  | 1464 | 20.784000000       1.0000000000 | 
|---|
|  | 1465 | }) | 
|---|
|  | 1466 | (type: [am = p] | 
|---|
|  | 1467 | {exp coef:0} = { | 
|---|
|  | 1468 | 9.3790000000       1.0000000000 | 
|---|
|  | 1469 | }) | 
|---|
|  | 1470 | (type: [am = p] | 
|---|
|  | 1471 | {exp coef:0} = { | 
|---|
|  | 1472 | 4.2320000000       1.0000000000 | 
|---|
|  | 1473 | }) | 
|---|
|  | 1474 | (type: [am = p] | 
|---|
|  | 1475 | {exp coef:0} = { | 
|---|
|  | 1476 | 0.37600000000E-01   1.0000000000 | 
|---|
|  | 1477 | }) | 
|---|
|  | 1478 | (type: [(am = d puream = 1)] | 
|---|
|  | 1479 | {exp coef:0} = { | 
|---|
|  | 1480 | 0.25400000000       1.0000000000 | 
|---|
|  | 1481 | }) | 
|---|
|  | 1482 | (type: [(am = d puream = 1)] | 
|---|
|  | 1483 | {exp coef:0} = { | 
|---|
|  | 1484 | 0.62800000000       1.0000000000 | 
|---|
|  | 1485 | }) | 
|---|
|  | 1486 | (type: [(am = d puream = 1)] | 
|---|
|  | 1487 | {exp coef:0} = { | 
|---|
|  | 1488 | 1.5510000000       1.0000000000 | 
|---|
|  | 1489 | }) | 
|---|
|  | 1490 | (type: [(am = d puream = 1)] | 
|---|
|  | 1491 | {exp coef:0} = { | 
|---|
|  | 1492 | 32.255000000       1.0000000000 | 
|---|
|  | 1493 | }) | 
|---|
|  | 1494 | (type: [(am = d puream = 1)] | 
|---|
|  | 1495 | {exp coef:0} = { | 
|---|
|  | 1496 | 12.888000000       1.0000000000 | 
|---|
|  | 1497 | }) | 
|---|
|  | 1498 | (type: [(am = d puream = 1)] | 
|---|
|  | 1499 | {exp coef:0} = { | 
|---|
|  | 1500 | 5.1490000000       1.0000000000 | 
|---|
|  | 1501 | }) | 
|---|
|  | 1502 | (type: [(am = d puream = 1)] | 
|---|
|  | 1503 | {exp coef:0} = { | 
|---|
|  | 1504 | 0.95200000000E-01   1.0000000000 | 
|---|
|  | 1505 | }) | 
|---|
|  | 1506 | (type: [(am = f puream = 1)] | 
|---|
|  | 1507 | {exp coef:0} = { | 
|---|
|  | 1508 | 0.42300000000       1.0000000000 | 
|---|
|  | 1509 | }) | 
|---|
|  | 1510 | (type: [(am = f puream = 1)] | 
|---|
|  | 1511 | {exp coef:0} = { | 
|---|
|  | 1512 | 1.0890000000       1.0000000000 | 
|---|
|  | 1513 | }) | 
|---|
|  | 1514 | (type: [(am = f puream = 1)] | 
|---|
|  | 1515 | {exp coef:0} = { | 
|---|
|  | 1516 | 19.107000000       1.0000000000 | 
|---|
|  | 1517 | }) | 
|---|
|  | 1518 | (type: [(am = f puream = 1)] | 
|---|
|  | 1519 | {exp coef:0} = { | 
|---|
|  | 1520 | 6.9500000000       1.0000000000 | 
|---|
|  | 1521 | }) | 
|---|
|  | 1522 | (type: [(am = f puream = 1)] | 
|---|
|  | 1523 | {exp coef:0} = { | 
|---|
|  | 1524 | 0.21700000000       1.0000000000 | 
|---|
|  | 1525 | }) | 
|---|
|  | 1526 | (type: [(am = g puream = 1)] | 
|---|
|  | 1527 | {exp coef:0} = { | 
|---|
|  | 1528 | 0.82700000000       1.0000000000 | 
|---|
|  | 1529 | }) | 
|---|
|  | 1530 | (type: [(am = g puream = 1)] | 
|---|
|  | 1531 | {exp coef:0} = { | 
|---|
|  | 1532 | 14.782000000       1.0000000000 | 
|---|
|  | 1533 | }) | 
|---|
|  | 1534 | (type: [(am = g puream = 1)] | 
|---|
|  | 1535 | {exp coef:0} = { | 
|---|
|  | 1536 | 0.37800000000       1.0000000000 | 
|---|
|  | 1537 | }) | 
|---|
|  | 1538 | ] | 
|---|
|  | 1539 | % | 
|---|
|  | 1540 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
|  | 1541 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
|  | 1542 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g) | 
|---|
|  | 1543 | argon: "aug-cc-pCVQZ": [ | 
|---|
|  | 1544 | (type: [am = s am = s am = s] | 
|---|
|  | 1545 | {exp coef:0 coef:1 coef:2} = { | 
|---|
|  | 1546 | 950600.00000      0.22754500000E-04 -0.64620100000E-05  0.20205600000E-05 | 
|---|
|  | 1547 | 142300.00000      0.17694500000E-03 -0.50234600000E-04  0.15685100000E-04 | 
|---|
|  | 1548 | 32360.000000      0.93128200000E-03 -0.26480400000E-03  0.82861700000E-04 | 
|---|
|  | 1549 | 9145.0000000      0.39286000000E-02 -0.11189500000E-02  0.34926400000E-03 | 
|---|
|  | 1550 | 2970.0000000      0.14206400000E-01 -0.40827600000E-02  0.12797600000E-02 | 
|---|
|  | 1551 | 1064.0000000      0.44811400000E-01 -0.13121600000E-01  0.41036500000E-02 | 
|---|
|  | 1552 | 410.80000000      0.12100100000     -0.37285500000E-01  0.11778900000E-01 | 
|---|
|  | 1553 | 168.00000000      0.26057900000     -0.89470900000E-01  0.28386800000E-01 | 
|---|
|  | 1554 | 71.990000000      0.38136400000     -0.16805400000      0.55240600000E-01 | 
|---|
|  | 1555 | 31.670000000      0.27605800000     -0.17959400000      0.60749200000E-01 | 
|---|
|  | 1556 | 12.890000000      0.50517900000E-01  0.10295300000     -0.36201200000E-01 | 
|---|
|  | 1557 | 5.9290000000     -0.35986600000E-02  0.56263000000     -0.27539800000 | 
|---|
|  | 1558 | 2.6780000000      0.21879800000E-02  0.45035500000     -0.36284500000 | 
|---|
|  | 1559 | }) | 
|---|
|  | 1560 | (type: [am = s] | 
|---|
|  | 1561 | {exp coef:0} = { | 
|---|
|  | 1562 | 0.94160000000       1.0000000000 | 
|---|
|  | 1563 | }) | 
|---|
|  | 1564 | (type: [am = s] | 
|---|
|  | 1565 | {exp coef:0} = { | 
|---|
|  | 1566 | 0.42390000000       1.0000000000 | 
|---|
|  | 1567 | }) | 
|---|
|  | 1568 | (type: [am = s] | 
|---|
|  | 1569 | {exp coef:0} = { | 
|---|
|  | 1570 | 0.17140000000       1.0000000000 | 
|---|
|  | 1571 | }) | 
|---|
|  | 1572 | (type: [am = s] | 
|---|
|  | 1573 | {exp coef:0} = { | 
|---|
|  | 1574 | 24.024000000       1.0000000000 | 
|---|
|  | 1575 | }) | 
|---|
|  | 1576 | (type: [am = s] | 
|---|
|  | 1577 | {exp coef:0} = { | 
|---|
|  | 1578 | 12.706000000       1.0000000000 | 
|---|
|  | 1579 | }) | 
|---|
|  | 1580 | (type: [am = s] | 
|---|
|  | 1581 | {exp coef:0} = { | 
|---|
|  | 1582 | 6.7200000000       1.0000000000 | 
|---|
|  | 1583 | }) | 
|---|
|  | 1584 | (type: [am = s] | 
|---|
|  | 1585 | {exp coef:0} = { | 
|---|
|  | 1586 | 0.61000000000E-01   1.0000000000 | 
|---|
|  | 1587 | }) | 
|---|
|  | 1588 | (type: [am = p am = p] | 
|---|
|  | 1589 | {exp coef:0 coef:1} = { | 
|---|
|  | 1590 | 1890.0000000      0.49575200000E-03 -0.13886300000E-03 | 
|---|
|  | 1591 | 447.80000000      0.42517200000E-02 -0.11887000000E-02 | 
|---|
|  | 1592 | 144.60000000      0.22327700000E-01 -0.63255300000E-02 | 
|---|
|  | 1593 | 54.460000000      0.83087800000E-01 -0.23881300000E-01 | 
|---|
|  | 1594 | 22.510000000      0.21711000000     -0.64923800000E-01 | 
|---|
|  | 1595 | 9.7740000000      0.37450700000     -0.11544400000 | 
|---|
|  | 1596 | 4.3680000000      0.36644500000     -0.12365100000 | 
|---|
|  | 1597 | 1.9590000000      0.12924500000      0.64905500000E-01 | 
|---|
|  | 1598 | }) | 
|---|
|  | 1599 | (type: [am = p] | 
|---|
|  | 1600 | {exp coef:0} = { | 
|---|
|  | 1601 | 0.82600000000       1.0000000000 | 
|---|
|  | 1602 | }) | 
|---|
|  | 1603 | (type: [am = p] | 
|---|
|  | 1604 | {exp coef:0} = { | 
|---|
|  | 1605 | 0.32970000000       1.0000000000 | 
|---|
|  | 1606 | }) | 
|---|
|  | 1607 | (type: [am = p] | 
|---|
|  | 1608 | {exp coef:0} = { | 
|---|
|  | 1609 | 0.12420000000       1.0000000000 | 
|---|
|  | 1610 | }) | 
|---|
|  | 1611 | (type: [am = p] | 
|---|
|  | 1612 | {exp coef:0} = { | 
|---|
|  | 1613 | 23.627000000       1.0000000000 | 
|---|
|  | 1614 | }) | 
|---|
|  | 1615 | (type: [am = p] | 
|---|
|  | 1616 | {exp coef:0} = { | 
|---|
|  | 1617 | 10.654000000       1.0000000000 | 
|---|
|  | 1618 | }) | 
|---|
|  | 1619 | (type: [am = p] | 
|---|
|  | 1620 | {exp coef:0} = { | 
|---|
|  | 1621 | 4.8040000000       1.0000000000 | 
|---|
|  | 1622 | }) | 
|---|
|  | 1623 | (type: [am = p] | 
|---|
|  | 1624 | {exp coef:0} = { | 
|---|
|  | 1625 | 0.43500000000E-01   1.0000000000 | 
|---|
|  | 1626 | }) | 
|---|
|  | 1627 | (type: [(am = d puream = 1)] | 
|---|
|  | 1628 | {exp coef:0} = { | 
|---|
|  | 1629 | 0.31100000000       1.0000000000 | 
|---|
|  | 1630 | }) | 
|---|
|  | 1631 | (type: [(am = d puream = 1)] | 
|---|
|  | 1632 | {exp coef:0} = { | 
|---|
|  | 1633 | 0.76300000000       1.0000000000 | 
|---|
|  | 1634 | }) | 
|---|
|  | 1635 | (type: [(am = d puream = 1)] | 
|---|
|  | 1636 | {exp coef:0} = { | 
|---|
|  | 1637 | 1.8730000000       1.0000000000 | 
|---|
|  | 1638 | }) | 
|---|
|  | 1639 | (type: [(am = d puream = 1)] | 
|---|
|  | 1640 | {exp coef:0} = { | 
|---|
|  | 1641 | 37.364000000       1.0000000000 | 
|---|
|  | 1642 | }) | 
|---|
|  | 1643 | (type: [(am = d puream = 1)] | 
|---|
|  | 1644 | {exp coef:0} = { | 
|---|
|  | 1645 | 15.013000000       1.0000000000 | 
|---|
|  | 1646 | }) | 
|---|
|  | 1647 | (type: [(am = d puream = 1)] | 
|---|
|  | 1648 | {exp coef:0} = { | 
|---|
|  | 1649 | 6.0320000000       1.0000000000 | 
|---|
|  | 1650 | }) | 
|---|
|  | 1651 | (type: [(am = d puream = 1)] | 
|---|
|  | 1652 | {exp coef:0} = { | 
|---|
|  | 1653 | 0.11600000000       1.0000000000 | 
|---|
|  | 1654 | }) | 
|---|
|  | 1655 | (type: [(am = f puream = 1)] | 
|---|
|  | 1656 | {exp coef:0} = { | 
|---|
|  | 1657 | 0.54300000000       1.0000000000 | 
|---|
|  | 1658 | }) | 
|---|
|  | 1659 | (type: [(am = f puream = 1)] | 
|---|
|  | 1660 | {exp coef:0} = { | 
|---|
|  | 1661 | 1.3250000000       1.0000000000 | 
|---|
|  | 1662 | }) | 
|---|
|  | 1663 | (type: [(am = f puream = 1)] | 
|---|
|  | 1664 | {exp coef:0} = { | 
|---|
|  | 1665 | 21.884000000       1.0000000000 | 
|---|
|  | 1666 | }) | 
|---|
|  | 1667 | (type: [(am = f puream = 1)] | 
|---|
|  | 1668 | {exp coef:0} = { | 
|---|
|  | 1669 | 7.9680000000       1.0000000000 | 
|---|
|  | 1670 | }) | 
|---|
|  | 1671 | (type: [(am = f puream = 1)] | 
|---|
|  | 1672 | {exp coef:0} = { | 
|---|
|  | 1673 | 0.29400000000       1.0000000000 | 
|---|
|  | 1674 | }) | 
|---|
|  | 1675 | (type: [(am = g puream = 1)] | 
|---|
|  | 1676 | {exp coef:0} = { | 
|---|
|  | 1677 | 1.0070000000       1.0000000000 | 
|---|
|  | 1678 | }) | 
|---|
|  | 1679 | (type: [(am = g puream = 1)] | 
|---|
|  | 1680 | {exp coef:0} = { | 
|---|
|  | 1681 | 17.243000000       1.0000000000 | 
|---|
|  | 1682 | }) | 
|---|
|  | 1683 | (type: [(am = g puream = 1)] | 
|---|
|  | 1684 | {exp coef:0} = { | 
|---|
|  | 1685 | 0.45900000000       1.0000000000 | 
|---|
|  | 1686 | }) | 
|---|
|  | 1687 | ] | 
|---|
|  | 1688 | ) | 
|---|