| 1 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 2 | // 
 | 
|---|
| 3 | //  Solution of linear systems involved in the Levenberg - Marquardt
 | 
|---|
| 4 | //  minimization algorithm
 | 
|---|
| 5 | //  Copyright (C) 2004  Manolis Lourakis (lourakis at ics forth gr)
 | 
|---|
| 6 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas
 | 
|---|
| 7 | //  Heraklion, Crete, Greece.
 | 
|---|
| 8 | //
 | 
|---|
| 9 | //  This program is free software; you can redistribute it and/or modify
 | 
|---|
| 10 | //  it under the terms of the GNU General Public License as published by
 | 
|---|
| 11 | //  the Free Software Foundation; either version 2 of the License, or
 | 
|---|
| 12 | //  (at your option) any later version.
 | 
|---|
| 13 | //
 | 
|---|
| 14 | //  This program is distributed in the hope that it will be useful,
 | 
|---|
| 15 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 16 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 17 | //  GNU General Public License for more details.
 | 
|---|
| 18 | //
 | 
|---|
| 19 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 20 | 
 | 
|---|
| 21 | 
 | 
|---|
| 22 | /* Solvers for the linear systems Ax=b. Solvers should NOT modify their A & B arguments! */
 | 
|---|
| 23 | 
 | 
|---|
| 24 | 
 | 
|---|
| 25 | #ifndef LM_REAL // not included by Axb.c
 | 
|---|
| 26 | #error This file should not be compiled directly!
 | 
|---|
| 27 | #endif
 | 
|---|
| 28 | 
 | 
|---|
| 29 | 
 | 
|---|
| 30 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 31 | #define __STATIC__ static
 | 
|---|
| 32 | #else
 | 
|---|
| 33 | #define __STATIC__ // empty
 | 
|---|
| 34 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 35 | 
 | 
|---|
| 36 | #ifdef HAVE_LAPACK
 | 
|---|
| 37 | 
 | 
|---|
| 38 | /* prototypes of LAPACK routines */
 | 
|---|
| 39 | 
 | 
|---|
| 40 | #define GEQRF LM_MK_LAPACK_NAME(geqrf)
 | 
|---|
| 41 | #define ORGQR LM_MK_LAPACK_NAME(orgqr)
 | 
|---|
| 42 | #define TRTRS LM_MK_LAPACK_NAME(trtrs)
 | 
|---|
| 43 | #define POTF2 LM_MK_LAPACK_NAME(potf2)
 | 
|---|
| 44 | #define POTRF LM_MK_LAPACK_NAME(potrf)
 | 
|---|
| 45 | #define POTRS LM_MK_LAPACK_NAME(potrs)
 | 
|---|
| 46 | #define GETRF LM_MK_LAPACK_NAME(getrf)
 | 
|---|
| 47 | #define GETRS LM_MK_LAPACK_NAME(getrs)
 | 
|---|
| 48 | #define GESVD LM_MK_LAPACK_NAME(gesvd)
 | 
|---|
| 49 | #define GESDD LM_MK_LAPACK_NAME(gesdd)
 | 
|---|
| 50 | #define SYTRF LM_MK_LAPACK_NAME(sytrf)
 | 
|---|
| 51 | #define SYTRS LM_MK_LAPACK_NAME(sytrs)
 | 
|---|
| 52 | #define PLASMA_POSV LM_CAT_(PLASMA_, LM_ADD_PREFIX(posv))
 | 
|---|
| 53 | 
 | 
|---|
| 54 | #ifdef __cplusplus
 | 
|---|
| 55 | extern "C" {
 | 
|---|
| 56 | #endif
 | 
|---|
| 57 | /* QR decomposition */
 | 
|---|
| 58 | extern int GEQRF(int *m, int *n, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
 | 
|---|
| 59 | extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
 | 
|---|
| 60 | 
 | 
|---|
| 61 | /* solution of triangular systems */
 | 
|---|
| 62 | extern int TRTRS(char *uplo, char *trans, char *diag, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
 | 
|---|
| 63 | 
 | 
|---|
| 64 | /* Cholesky decomposition and systems solution */
 | 
|---|
| 65 | extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);
 | 
|---|
| 66 | extern int POTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *info); /* block version of dpotf2 */
 | 
|---|
| 67 | extern int POTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
 | 
|---|
| 68 | 
 | 
|---|
| 69 | /* LU decomposition and systems solution */
 | 
|---|
| 70 | extern int GETRF(int *m, int *n, LM_REAL *a, int *lda, int *ipiv, int *info);
 | 
|---|
| 71 | extern int GETRS(char *trans, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
 | 
|---|
| 72 | 
 | 
|---|
| 73 | /* Singular Value Decomposition (SVD) */
 | 
|---|
| 74 | extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,
 | 
|---|
| 75 |                    LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);
 | 
|---|
| 76 | 
 | 
|---|
| 77 | /* lapack 3.0 new SVD routine, faster than xgesvd().
 | 
|---|
| 78 |  * In case that your version of LAPACK does not include them, use the above two older routines
 | 
|---|
| 79 |  */
 | 
|---|
| 80 | extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,
 | 
|---|
| 81 |                    LM_REAL *work, int *lwork, int *iwork, int *info);
 | 
|---|
| 82 | 
 | 
|---|
| 83 | /* LDLt/UDUt factorization and systems solution */
 | 
|---|
| 84 | extern int SYTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *ipiv, LM_REAL *work, int *lwork, int *info);
 | 
|---|
| 85 | extern int SYTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
 | 
|---|
| 86 | #ifdef __cplusplus
 | 
|---|
| 87 | }
 | 
|---|
| 88 | #endif
 | 
|---|
| 89 | 
 | 
|---|
| 90 | /* precision-specific definitions */
 | 
|---|
| 91 | #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
 | 
|---|
| 92 | #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
 | 
|---|
| 93 | #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
 | 
|---|
| 94 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
 | 
|---|
| 95 | #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
 | 
|---|
| 96 | #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
 | 
|---|
| 97 | #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
 | 
|---|
| 98 | 
 | 
|---|
| 99 | /*
 | 
|---|
| 100 |  * This function returns the solution of Ax = b
 | 
|---|
| 101 |  *
 | 
|---|
| 102 |  * The function is based on QR decomposition with explicit computation of Q:
 | 
|---|
| 103 |  * If A=Q R with Q orthogonal and R upper triangular, the linear system becomes
 | 
|---|
| 104 |  * Q R x = b or R x = Q^T b.
 | 
|---|
| 105 |  * The last equation can be solved directly.
 | 
|---|
| 106 |  *
 | 
|---|
| 107 |  * A is mxm, b is mx1
 | 
|---|
| 108 |  *
 | 
|---|
| 109 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
| 110 |  *
 | 
|---|
| 111 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
| 112 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
| 113 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
| 114 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
| 115 |  */
 | 
|---|
| 116 | int AX_EQ_B_QR(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
| 117 | {
 | 
|---|
| 118 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
| 119 | __STATIC__ int buf_sz=0;
 | 
|---|
| 120 | 
 | 
|---|
| 121 | static int nb=0; /* no __STATIC__ decl. here! */
 | 
|---|
| 122 | 
 | 
|---|
| 123 | LM_REAL *a, *tau, *r, *work;
 | 
|---|
| 124 | int a_sz, tau_sz, r_sz, tot_sz;
 | 
|---|
| 125 | register int i, j;
 | 
|---|
| 126 | int info, worksz, nrhs=1;
 | 
|---|
| 127 | register LM_REAL sum;
 | 
|---|
| 128 | 
 | 
|---|
| 129 |     if(!A)
 | 
|---|
| 130 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 131 |     {
 | 
|---|
| 132 |       if(buf) free(buf);
 | 
|---|
| 133 |       buf=NULL;
 | 
|---|
| 134 |       buf_sz=0;
 | 
|---|
| 135 | 
 | 
|---|
| 136 |       return 1;
 | 
|---|
| 137 |     }
 | 
|---|
| 138 | #else
 | 
|---|
| 139 |       return 1; /* NOP */
 | 
|---|
| 140 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 141 |    
 | 
|---|
| 142 |     /* calculate required memory size */
 | 
|---|
| 143 |     a_sz=m*m;
 | 
|---|
| 144 |     tau_sz=m;
 | 
|---|
| 145 |     r_sz=m*m; /* only the upper triangular part really needed */
 | 
|---|
| 146 |     if(!nb){
 | 
|---|
| 147 |       LM_REAL tmp;
 | 
|---|
| 148 | 
 | 
|---|
| 149 |       worksz=-1; // workspace query; optimal size is returned in tmp
 | 
|---|
| 150 |       GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
 | 
|---|
| 151 |       nb=((int)tmp)/m; // optimal worksize is m*nb
 | 
|---|
| 152 |     }
 | 
|---|
| 153 |     worksz=nb*m;
 | 
|---|
| 154 |     tot_sz=a_sz + tau_sz + r_sz + worksz;
 | 
|---|
| 155 | 
 | 
|---|
| 156 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 157 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
| 158 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
| 159 | 
 | 
|---|
| 160 |       buf_sz=tot_sz;
 | 
|---|
| 161 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
| 162 |       if(!buf){
 | 
|---|
| 163 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
 | 
|---|
| 164 |         exit(1);
 | 
|---|
| 165 |       }
 | 
|---|
| 166 |     }
 | 
|---|
| 167 | #else
 | 
|---|
| 168 |       buf_sz=tot_sz;
 | 
|---|
| 169 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
| 170 |       if(!buf){
 | 
|---|
| 171 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
 | 
|---|
| 172 |         exit(1);
 | 
|---|
| 173 |       }
 | 
|---|
| 174 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 175 | 
 | 
|---|
| 176 |     a=buf;
 | 
|---|
| 177 |     tau=a+a_sz;
 | 
|---|
| 178 |     r=tau+tau_sz;
 | 
|---|
| 179 |     work=r+r_sz;
 | 
|---|
| 180 | 
 | 
|---|
| 181 |   /* store A (column major!) into a */
 | 
|---|
| 182 |         for(i=0; i<m; i++)
 | 
|---|
| 183 |                 for(j=0; j<m; j++)
 | 
|---|
| 184 |                         a[i+j*m]=A[i*m+j];
 | 
|---|
| 185 | 
 | 
|---|
| 186 |   /* QR decomposition of A */
 | 
|---|
| 187 |   GEQRF((int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
 | 
|---|
| 188 |   /* error treatment */
 | 
|---|
| 189 |   if(info!=0){
 | 
|---|
| 190 |     if(info<0){
 | 
|---|
| 191 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QR) "()\n", -info);
 | 
|---|
| 192 |       exit(1);
 | 
|---|
| 193 |     }
 | 
|---|
| 194 |     else{
 | 
|---|
| 195 |       fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QR) "()\n", info);
 | 
|---|
| 196 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 197 |       free(buf);
 | 
|---|
| 198 | #endif
 | 
|---|
| 199 | 
 | 
|---|
| 200 |       return 0;
 | 
|---|
| 201 |     }
 | 
|---|
| 202 |   }
 | 
|---|
| 203 | 
 | 
|---|
| 204 |   /* R is stored in the upper triangular part of a; copy it in r so that ORGQR() below won't destroy it */ 
 | 
|---|
| 205 |   memcpy(r, a, r_sz*sizeof(LM_REAL));
 | 
|---|
| 206 | 
 | 
|---|
| 207 |   /* compute Q using the elementary reflectors computed by the above decomposition */
 | 
|---|
| 208 |   ORGQR((int *)&m, (int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
 | 
|---|
| 209 |   if(info!=0){
 | 
|---|
| 210 |     if(info<0){
 | 
|---|
| 211 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", AX_EQ_B_QR) "()\n", -info);
 | 
|---|
| 212 |       exit(1);
 | 
|---|
| 213 |     }
 | 
|---|
| 214 |     else{
 | 
|---|
| 215 |       fprintf(stderr, RCAT("Unknown LAPACK error (%d) in ", AX_EQ_B_QR) "()\n", info);
 | 
|---|
| 216 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 217 |       free(buf);
 | 
|---|
| 218 | #endif
 | 
|---|
| 219 | 
 | 
|---|
| 220 |       return 0;
 | 
|---|
| 221 |     }
 | 
|---|
| 222 |   }
 | 
|---|
| 223 | 
 | 
|---|
| 224 |   /* Q is now in a; compute Q^T b in x */
 | 
|---|
| 225 |   for(i=0; i<m; i++){
 | 
|---|
| 226 |     for(j=0, sum=0.0; j<m; j++)
 | 
|---|
| 227 |       sum+=a[i*m+j]*B[j];
 | 
|---|
| 228 |     x[i]=sum;
 | 
|---|
| 229 |   }
 | 
|---|
| 230 | 
 | 
|---|
| 231 |   /* solve the linear system R x = Q^t b */
 | 
|---|
| 232 |   TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, r, (int *)&m, x, (int *)&m, &info);
 | 
|---|
| 233 |   /* error treatment */
 | 
|---|
| 234 |   if(info!=0){
 | 
|---|
| 235 |     if(info<0){
 | 
|---|
| 236 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QR) "()\n", -info);
 | 
|---|
| 237 |       exit(1);
 | 
|---|
| 238 |     }
 | 
|---|
| 239 |     else{
 | 
|---|
| 240 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QR) "()\n", info);
 | 
|---|
| 241 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 242 |       free(buf);
 | 
|---|
| 243 | #endif
 | 
|---|
| 244 | 
 | 
|---|
| 245 |       return 0;
 | 
|---|
| 246 |     }
 | 
|---|
| 247 |   }
 | 
|---|
| 248 | 
 | 
|---|
| 249 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 250 |   free(buf);
 | 
|---|
| 251 | #endif
 | 
|---|
| 252 | 
 | 
|---|
| 253 |         return 1;
 | 
|---|
| 254 | }
 | 
|---|
| 255 | 
 | 
|---|
| 256 | /*
 | 
|---|
| 257 |  * This function returns the solution of min_x ||Ax - b||
 | 
|---|
| 258 |  *
 | 
|---|
| 259 |  * || . || is the second order (i.e. L2) norm. This is a least squares technique that
 | 
|---|
| 260 |  * is based on QR decomposition:
 | 
|---|
| 261 |  * If A=Q R with Q orthogonal and R upper triangular, the normal equations become
 | 
|---|
| 262 |  * (A^T A) x = A^T b  or (R^T Q^T Q R) x = A^T b or (R^T R) x = A^T b.
 | 
|---|
| 263 |  * This amounts to solving R^T y = A^T b for y and then R x = y for x
 | 
|---|
| 264 |  * Note that Q does not need to be explicitly computed
 | 
|---|
| 265 |  *
 | 
|---|
| 266 |  * A is mxn, b is mx1
 | 
|---|
| 267 |  *
 | 
|---|
| 268 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
| 269 |  *
 | 
|---|
| 270 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
| 271 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
| 272 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
| 273 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
| 274 |  */
 | 
|---|
| 275 | int AX_EQ_B_QRLS(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m, int n)
 | 
|---|
| 276 | {
 | 
|---|
| 277 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
| 278 | __STATIC__ int buf_sz=0;
 | 
|---|
| 279 | 
 | 
|---|
| 280 | static int nb=0; /* no __STATIC__ decl. here! */
 | 
|---|
| 281 | 
 | 
|---|
| 282 | LM_REAL *a, *tau, *r, *work;
 | 
|---|
| 283 | int a_sz, tau_sz, r_sz, tot_sz;
 | 
|---|
| 284 | register int i, j;
 | 
|---|
| 285 | int info, worksz, nrhs=1;
 | 
|---|
| 286 | register LM_REAL sum;
 | 
|---|
| 287 |    
 | 
|---|
| 288 |     if(!A)
 | 
|---|
| 289 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 290 |     {
 | 
|---|
| 291 |       if(buf) free(buf);
 | 
|---|
| 292 |       buf=NULL;
 | 
|---|
| 293 |       buf_sz=0;
 | 
|---|
| 294 | 
 | 
|---|
| 295 |       return 1;
 | 
|---|
| 296 |     }
 | 
|---|
| 297 | #else
 | 
|---|
| 298 |       return 1; /* NOP */
 | 
|---|
| 299 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 300 |    
 | 
|---|
| 301 |     if(m<n){
 | 
|---|
| 302 |                   fprintf(stderr, RCAT("Normal equations require that the number of rows is greater than number of columns in ", AX_EQ_B_QRLS) "() [%d x %d]! -- try transposing\n", m, n);
 | 
|---|
| 303 |                   exit(1);
 | 
|---|
| 304 |           }
 | 
|---|
| 305 |       
 | 
|---|
| 306 |     /* calculate required memory size */
 | 
|---|
| 307 |     a_sz=m*n;
 | 
|---|
| 308 |     tau_sz=n;
 | 
|---|
| 309 |     r_sz=n*n;
 | 
|---|
| 310 |     if(!nb){
 | 
|---|
| 311 |       LM_REAL tmp;
 | 
|---|
| 312 | 
 | 
|---|
| 313 |       worksz=-1; // workspace query; optimal size is returned in tmp
 | 
|---|
| 314 |       GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
 | 
|---|
| 315 |       nb=((int)tmp)/m; // optimal worksize is m*nb
 | 
|---|
| 316 |     }
 | 
|---|
| 317 |     worksz=nb*m;
 | 
|---|
| 318 |     tot_sz=a_sz + tau_sz + r_sz + worksz;
 | 
|---|
| 319 | 
 | 
|---|
| 320 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 321 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
| 322 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
| 323 | 
 | 
|---|
| 324 |       buf_sz=tot_sz;
 | 
|---|
| 325 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
| 326 |       if(!buf){
 | 
|---|
| 327 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
 | 
|---|
| 328 |         exit(1);
 | 
|---|
| 329 |       }
 | 
|---|
| 330 |     }
 | 
|---|
| 331 | #else
 | 
|---|
| 332 |       buf_sz=tot_sz;
 | 
|---|
| 333 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
| 334 |       if(!buf){
 | 
|---|
| 335 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
 | 
|---|
| 336 |         exit(1);
 | 
|---|
| 337 |       }
 | 
|---|
| 338 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 339 | 
 | 
|---|
| 340 |     a=buf;
 | 
|---|
| 341 |     tau=a+a_sz;
 | 
|---|
| 342 |     r=tau+tau_sz;
 | 
|---|
| 343 |     work=r+r_sz;
 | 
|---|
| 344 | 
 | 
|---|
| 345 |   /* store A (column major!) into a */
 | 
|---|
| 346 |         for(i=0; i<m; i++)
 | 
|---|
| 347 |                 for(j=0; j<n; j++)
 | 
|---|
| 348 |                         a[i+j*m]=A[i*n+j];
 | 
|---|
| 349 | 
 | 
|---|
| 350 |   /* compute A^T b in x */
 | 
|---|
| 351 |   for(i=0; i<n; i++){
 | 
|---|
| 352 |     for(j=0, sum=0.0; j<m; j++)
 | 
|---|
| 353 |       sum+=A[j*n+i]*B[j];
 | 
|---|
| 354 |     x[i]=sum;
 | 
|---|
| 355 |   }
 | 
|---|
| 356 | 
 | 
|---|
| 357 |   /* QR decomposition of A */
 | 
|---|
| 358 |   GEQRF((int *)&m, (int *)&n, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
 | 
|---|
| 359 |   /* error treatment */
 | 
|---|
| 360 |   if(info!=0){
 | 
|---|
| 361 |     if(info<0){
 | 
|---|
| 362 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", -info);
 | 
|---|
| 363 |       exit(1);
 | 
|---|
| 364 |     }
 | 
|---|
| 365 |     else{
 | 
|---|
| 366 |       fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", info);
 | 
|---|
| 367 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 368 |       free(buf);
 | 
|---|
| 369 | #endif
 | 
|---|
| 370 | 
 | 
|---|
| 371 |       return 0;
 | 
|---|
| 372 |     }
 | 
|---|
| 373 |   }
 | 
|---|
| 374 | 
 | 
|---|
| 375 |   /* R is stored in the upper triangular part of a. Note that a is mxn while r nxn */
 | 
|---|
| 376 |   for(j=0; j<n; j++){
 | 
|---|
| 377 |     for(i=0; i<=j; i++)
 | 
|---|
| 378 |       r[i+j*n]=a[i+j*m];
 | 
|---|
| 379 | 
 | 
|---|
| 380 |     /* lower part is zero */
 | 
|---|
| 381 |     for(i=j+1; i<n; i++)
 | 
|---|
| 382 |       r[i+j*n]=0.0;
 | 
|---|
| 383 |   }
 | 
|---|
| 384 | 
 | 
|---|
| 385 |   /* solve the linear system R^T y = A^t b */
 | 
|---|
| 386 |   TRTRS("U", "T", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
 | 
|---|
| 387 |   /* error treatment */
 | 
|---|
| 388 |   if(info!=0){
 | 
|---|
| 389 |     if(info<0){
 | 
|---|
| 390 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
 | 
|---|
| 391 |       exit(1);
 | 
|---|
| 392 |     }
 | 
|---|
| 393 |     else{
 | 
|---|
| 394 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
 | 
|---|
| 395 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 396 |       free(buf);
 | 
|---|
| 397 | #endif
 | 
|---|
| 398 | 
 | 
|---|
| 399 |       return 0;
 | 
|---|
| 400 |     }
 | 
|---|
| 401 |   }
 | 
|---|
| 402 | 
 | 
|---|
| 403 |   /* solve the linear system R x = y */
 | 
|---|
| 404 |   TRTRS("U", "N", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
 | 
|---|
| 405 |   /* error treatment */
 | 
|---|
| 406 |   if(info!=0){
 | 
|---|
| 407 |     if(info<0){
 | 
|---|
| 408 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
 | 
|---|
| 409 |       exit(1);
 | 
|---|
| 410 |     }
 | 
|---|
| 411 |     else{
 | 
|---|
| 412 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
 | 
|---|
| 413 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 414 |       free(buf);
 | 
|---|
| 415 | #endif
 | 
|---|
| 416 | 
 | 
|---|
| 417 |       return 0;
 | 
|---|
| 418 |     }
 | 
|---|
| 419 |   }
 | 
|---|
| 420 | 
 | 
|---|
| 421 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 422 |   free(buf);
 | 
|---|
| 423 | #endif
 | 
|---|
| 424 | 
 | 
|---|
| 425 |         return 1;
 | 
|---|
| 426 | }
 | 
|---|
| 427 | 
 | 
|---|
| 428 | /*
 | 
|---|
| 429 |  * This function returns the solution of Ax=b
 | 
|---|
| 430 |  *
 | 
|---|
| 431 |  * The function assumes that A is symmetric & postive definite and employs
 | 
|---|
| 432 |  * the Cholesky decomposition:
 | 
|---|
| 433 |  * If A=L L^T with L lower triangular, the system to be solved becomes
 | 
|---|
| 434 |  * (L L^T) x = b
 | 
|---|
| 435 |  * This amounts to solving L y = b for y and then L^T x = y for x
 | 
|---|
| 436 |  *
 | 
|---|
| 437 |  * A is mxm, b is mx1
 | 
|---|
| 438 |  *
 | 
|---|
| 439 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
| 440 |  *
 | 
|---|
| 441 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
| 442 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
| 443 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
| 444 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
| 445 |  */
 | 
|---|
| 446 | int AX_EQ_B_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
| 447 | {
 | 
|---|
| 448 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
| 449 | __STATIC__ int buf_sz=0;
 | 
|---|
| 450 | 
 | 
|---|
| 451 | LM_REAL *a;
 | 
|---|
| 452 | int a_sz, tot_sz;
 | 
|---|
| 453 | int info, nrhs=1;
 | 
|---|
| 454 |    
 | 
|---|
| 455 |     if(!A)
 | 
|---|
| 456 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 457 |     {
 | 
|---|
| 458 |       if(buf) free(buf);
 | 
|---|
| 459 |       buf=NULL;
 | 
|---|
| 460 |       buf_sz=0;
 | 
|---|
| 461 | 
 | 
|---|
| 462 |       return 1;
 | 
|---|
| 463 |     }
 | 
|---|
| 464 | #else
 | 
|---|
| 465 |       return 1; /* NOP */
 | 
|---|
| 466 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 467 |    
 | 
|---|
| 468 |     /* calculate required memory size */
 | 
|---|
| 469 |     a_sz=m*m;
 | 
|---|
| 470 |     tot_sz=a_sz;
 | 
|---|
| 471 | 
 | 
|---|
| 472 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 473 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
| 474 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
| 475 | 
 | 
|---|
| 476 |       buf_sz=tot_sz;
 | 
|---|
| 477 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
| 478 |       if(!buf){
 | 
|---|
| 479 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
 | 
|---|
| 480 |         exit(1);
 | 
|---|
| 481 |       }
 | 
|---|
| 482 |     }
 | 
|---|
| 483 | #else
 | 
|---|
| 484 |       buf_sz=tot_sz;
 | 
|---|
| 485 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
| 486 |       if(!buf){
 | 
|---|
| 487 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
 | 
|---|
| 488 |         exit(1);
 | 
|---|
| 489 |       }
 | 
|---|
| 490 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 491 | 
 | 
|---|
| 492 |   a=buf;
 | 
|---|
| 493 | 
 | 
|---|
| 494 |   /* store A into a and B into x. A is assumed symmetric,
 | 
|---|
| 495 |    * hence no transposition is needed
 | 
|---|
| 496 |    */
 | 
|---|
| 497 |   memcpy(a, A, a_sz*sizeof(LM_REAL));
 | 
|---|
| 498 |   memcpy(x, B, m*sizeof(LM_REAL));
 | 
|---|
| 499 | 
 | 
|---|
| 500 |   /* Cholesky decomposition of A */
 | 
|---|
| 501 |   //POTF2("L", (int *)&m, a, (int *)&m, (int *)&info);
 | 
|---|
| 502 |   POTRF("L", (int *)&m, a, (int *)&m, (int *)&info);
 | 
|---|
| 503 |   /* error treatment */
 | 
|---|
| 504 |   if(info!=0){
 | 
|---|
| 505 |     if(info<0){
 | 
|---|
| 506 |       fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTF2) "/", POTRF) " in ",
 | 
|---|
| 507 |                       AX_EQ_B_CHOL) "()\n", -info);
 | 
|---|
| 508 |       exit(1);
 | 
|---|
| 509 |     }
 | 
|---|
| 510 |     else{
 | 
|---|
| 511 |       fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\nthe factorization could not be completed for ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", info);
 | 
|---|
| 512 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 513 |       free(buf);
 | 
|---|
| 514 | #endif
 | 
|---|
| 515 | 
 | 
|---|
| 516 |       return 0;
 | 
|---|
| 517 |     }
 | 
|---|
| 518 |   }
 | 
|---|
| 519 | 
 | 
|---|
| 520 |   /* solve using the computed Cholesky in one lapack call */
 | 
|---|
| 521 |   POTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
 | 
|---|
| 522 |   if(info<0){
 | 
|---|
| 523 |     fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
 | 
|---|
| 524 |     exit(1);
 | 
|---|
| 525 |   }
 | 
|---|
| 526 | 
 | 
|---|
| 527 | #if 0
 | 
|---|
| 528 |   /* alternative: solve the linear system L y = b ... */
 | 
|---|
| 529 |   TRTRS("L", "N", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
 | 
|---|
| 530 |   /* error treatment */
 | 
|---|
| 531 |   if(info!=0){
 | 
|---|
| 532 |     if(info<0){
 | 
|---|
| 533 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
 | 
|---|
| 534 |       exit(1);
 | 
|---|
| 535 |     }
 | 
|---|
| 536 |     else{
 | 
|---|
| 537 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
 | 
|---|
| 538 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 539 |       free(buf);
 | 
|---|
| 540 | #endif
 | 
|---|
| 541 | 
 | 
|---|
| 542 |       return 0;
 | 
|---|
| 543 |     }
 | 
|---|
| 544 |   }
 | 
|---|
| 545 | 
 | 
|---|
| 546 |   /* ... solve the linear system L^T x = y */
 | 
|---|
| 547 |   TRTRS("L", "T", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
 | 
|---|
| 548 |   /* error treatment */
 | 
|---|
| 549 |   if(info!=0){
 | 
|---|
| 550 |     if(info<0){
 | 
|---|
| 551 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) "in ", AX_EQ_B_CHOL) "()\n", -info);
 | 
|---|
| 552 |       exit(1);
 | 
|---|
| 553 |     }
 | 
|---|
| 554 |     else{
 | 
|---|
| 555 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
 | 
|---|
| 556 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 557 |       free(buf);
 | 
|---|
| 558 | #endif
 | 
|---|
| 559 | 
 | 
|---|
| 560 |       return 0;
 | 
|---|
| 561 |     }
 | 
|---|
| 562 |   }
 | 
|---|
| 563 | #endif /* 0 */
 | 
|---|
| 564 | 
 | 
|---|
| 565 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 566 |   free(buf);
 | 
|---|
| 567 | #endif
 | 
|---|
| 568 | 
 | 
|---|
| 569 |         return 1;
 | 
|---|
| 570 | }
 | 
|---|
| 571 | 
 | 
|---|
| 572 | #ifdef HAVE_PLASMA
 | 
|---|
| 573 | 
 | 
|---|
| 574 | /* Linear algebra using PLASMA parallel library for multicore CPUs.
 | 
|---|
| 575 |  * http://icl.cs.utk.edu/plasma/
 | 
|---|
| 576 |  *
 | 
|---|
| 577 |  * WARNING: BLAS multithreading should be disabled, e.g. setenv MKL_NUM_THREADS 1
 | 
|---|
| 578 |  */
 | 
|---|
| 579 | 
 | 
|---|
| 580 | #ifndef _LM_PLASMA_MISC_
 | 
|---|
| 581 | /* avoid multiple inclusion of helper code */
 | 
|---|
| 582 | #define _LM_PLASMA_MISC_
 | 
|---|
| 583 | 
 | 
|---|
| 584 | #include <plasma.h>
 | 
|---|
| 585 | #include <cblas.h>
 | 
|---|
| 586 | #include <lapacke.h>
 | 
|---|
| 587 | #include <plasma_tmg.h>
 | 
|---|
| 588 | #include <core_blas.h>
 | 
|---|
| 589 | 
 | 
|---|
| 590 | /* programmatically determine the number of cores on the current machine */
 | 
|---|
| 591 | #ifdef _WIN32
 | 
|---|
| 592 | #include <windows.h>
 | 
|---|
| 593 | #elif __linux
 | 
|---|
| 594 | #include <unistd.h>
 | 
|---|
| 595 | #endif
 | 
|---|
| 596 | static int getnbcores()
 | 
|---|
| 597 | {
 | 
|---|
| 598 | #ifdef _WIN32
 | 
|---|
| 599 |   SYSTEM_INFO sysinfo;
 | 
|---|
| 600 |   GetSystemInfo(&sysinfo);
 | 
|---|
| 601 |   return sysinfo.dwNumberOfProcessors;
 | 
|---|
| 602 | #elif __linux
 | 
|---|
| 603 |   return sysconf(_SC_NPROCESSORS_ONLN);
 | 
|---|
| 604 | #else // unknown system
 | 
|---|
| 605 |   return 2<<1; // will be halved by right shift below
 | 
|---|
| 606 | #endif
 | 
|---|
| 607 | }
 | 
|---|
| 608 | 
 | 
|---|
| 609 | static int PLASMA_ncores=-(getnbcores()>>1); // >0 if PLASMA initialized, <0 otherwise
 | 
|---|
| 610 | 
 | 
|---|
| 611 | /* user-specified number of cores */
 | 
|---|
| 612 | void levmar_PLASMA_setnbcores(int cores)
 | 
|---|
| 613 | {
 | 
|---|
| 614 |   PLASMA_ncores=(cores>0)? -cores : ((cores)? cores : -2);
 | 
|---|
| 615 | }
 | 
|---|
| 616 | #endif /* _LM_PLASMA_MISC_ */
 | 
|---|
| 617 | 
 | 
|---|
| 618 | /*
 | 
|---|
| 619 |  * This function returns the solution of Ax=b
 | 
|---|
| 620 |  *
 | 
|---|
| 621 |  * The function assumes that A is symmetric & positive definite and employs the
 | 
|---|
| 622 |  * Cholesky decomposition implemented by PLASMA for homogeneous multicore processors.
 | 
|---|
| 623 |  *
 | 
|---|
| 624 |  * A is mxm, b is mx1
 | 
|---|
| 625 |  *
 | 
|---|
| 626 |  * The function returns 0 in case of error, 1 if successfull
 | 
|---|
| 627 |  *
 | 
|---|
| 628 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
| 629 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
| 630 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
| 631 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
| 632 |  */
 | 
|---|
| 633 | int AX_EQ_B_PLASMA_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
| 634 | {
 | 
|---|
| 635 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
| 636 | __STATIC__ int buf_sz=0;
 | 
|---|
| 637 | 
 | 
|---|
| 638 | LM_REAL *a;
 | 
|---|
| 639 | int a_sz, tot_sz;
 | 
|---|
| 640 | int info, nrhs=1;
 | 
|---|
| 641 | 
 | 
|---|
| 642 |     if(A==NULL){
 | 
|---|
| 643 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 644 |       if(buf) free(buf);
 | 
|---|
| 645 |       buf=NULL;
 | 
|---|
| 646 |       buf_sz=0;
 | 
|---|
| 647 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 648 | 
 | 
|---|
| 649 |       PLASMA_Finalize();
 | 
|---|
| 650 |       PLASMA_ncores=-PLASMA_ncores;
 | 
|---|
| 651 | 
 | 
|---|
| 652 |       return 1;
 | 
|---|
| 653 |     }
 | 
|---|
| 654 | 
 | 
|---|
| 655 |     /* calculate required memory size */
 | 
|---|
| 656 |     a_sz=m*m;
 | 
|---|
| 657 |     tot_sz=a_sz;
 | 
|---|
| 658 | 
 | 
|---|
| 659 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 660 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
| 661 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
| 662 | 
 | 
|---|
| 663 |       buf_sz=tot_sz;
 | 
|---|
| 664 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
| 665 |       if(!buf){
 | 
|---|
| 666 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
 | 
|---|
| 667 |         exit(1);
 | 
|---|
| 668 |       }
 | 
|---|
| 669 |     }
 | 
|---|
| 670 | #else
 | 
|---|
| 671 |     buf_sz=tot_sz;
 | 
|---|
| 672 |     buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
| 673 |     if(!buf){
 | 
|---|
| 674 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
 | 
|---|
| 675 |       exit(1);
 | 
|---|
| 676 |     }
 | 
|---|
| 677 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 678 | 
 | 
|---|
| 679 |     a=buf;
 | 
|---|
| 680 | 
 | 
|---|
| 681 |     /* store A into a and B into x; A is assumed to be symmetric,
 | 
|---|
| 682 |      * hence no transposition is needed
 | 
|---|
| 683 |      */
 | 
|---|
| 684 |     memcpy(a, A, a_sz*sizeof(LM_REAL));
 | 
|---|
| 685 |     memcpy(x, B, m*sizeof(LM_REAL));
 | 
|---|
| 686 | 
 | 
|---|
| 687 |   /* initialize PLASMA */
 | 
|---|
| 688 |   if(PLASMA_ncores<0){
 | 
|---|
| 689 |     PLASMA_ncores=-PLASMA_ncores;
 | 
|---|
| 690 |     PLASMA_Init(PLASMA_ncores);
 | 
|---|
| 691 |     fprintf(stderr, RCAT("\n", AX_EQ_B_PLASMA_CHOL) "(): PLASMA is running on %d cores.\n\n", PLASMA_ncores);
 | 
|---|
| 692 |   }
 | 
|---|
| 693 |   
 | 
|---|
| 694 |   /* Solve the linear system */
 | 
|---|
| 695 |   info=PLASMA_POSV(PlasmaLower, m, 1, a, m, x, m);
 | 
|---|
| 696 |   /* error treatment */
 | 
|---|
| 697 |   if(info!=0){
 | 
|---|
| 698 |     if(info<0){
 | 
|---|
| 699 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", PLASMA_POSV) " in ",
 | 
|---|
| 700 |                       AX_EQ_B_PLASMA_CHOL) "()\n", -info);
 | 
|---|
| 701 |       exit(1);
 | 
|---|
| 702 |     }
 | 
|---|
| 703 |     else{
 | 
|---|
| 704 |       fprintf(stderr, RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\n"
 | 
|---|
| 705 |                                 "the factorization could not be completed for ", PLASMA_POSV) " in ", AX_EQ_B_CHOL) "()\n", info);
 | 
|---|
| 706 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 707 |       free(buf);
 | 
|---|
| 708 | #endif
 | 
|---|
| 709 |       return 0;
 | 
|---|
| 710 |     }
 | 
|---|
| 711 |   }
 | 
|---|
| 712 | 
 | 
|---|
| 713 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 714 |   free(buf);
 | 
|---|
| 715 | #endif
 | 
|---|
| 716 | 
 | 
|---|
| 717 |         return 1;
 | 
|---|
| 718 | }
 | 
|---|
| 719 | #endif /* HAVE_PLASMA */
 | 
|---|
| 720 | 
 | 
|---|
| 721 | /*
 | 
|---|
| 722 |  * This function returns the solution of Ax = b
 | 
|---|
| 723 |  *
 | 
|---|
| 724 |  * The function employs LU decomposition:
 | 
|---|
| 725 |  * If A=L U with L lower and U upper triangular, then the original system
 | 
|---|
| 726 |  * amounts to solving
 | 
|---|
| 727 |  * L y = b, U x = y
 | 
|---|
| 728 |  *
 | 
|---|
| 729 |  * A is mxm, b is mx1
 | 
|---|
| 730 |  *
 | 
|---|
| 731 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
| 732 |  *
 | 
|---|
| 733 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
| 734 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
| 735 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
| 736 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
| 737 |  */
 | 
|---|
| 738 | int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
| 739 | {
 | 
|---|
| 740 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
| 741 | __STATIC__ int buf_sz=0;
 | 
|---|
| 742 | 
 | 
|---|
| 743 | int a_sz, ipiv_sz, tot_sz;
 | 
|---|
| 744 | register int i, j;
 | 
|---|
| 745 | int info, *ipiv, nrhs=1;
 | 
|---|
| 746 | LM_REAL *a;
 | 
|---|
| 747 |    
 | 
|---|
| 748 |     if(!A)
 | 
|---|
| 749 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 750 |     {
 | 
|---|
| 751 |       if(buf) free(buf);
 | 
|---|
| 752 |       buf=NULL;
 | 
|---|
| 753 |       buf_sz=0;
 | 
|---|
| 754 | 
 | 
|---|
| 755 |       return 1;
 | 
|---|
| 756 |     }
 | 
|---|
| 757 | #else
 | 
|---|
| 758 |       return 1; /* NOP */
 | 
|---|
| 759 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 760 |    
 | 
|---|
| 761 |     /* calculate required memory size */
 | 
|---|
| 762 |     ipiv_sz=m;
 | 
|---|
| 763 |     a_sz=m*m;
 | 
|---|
| 764 |     tot_sz=a_sz*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
| 765 | 
 | 
|---|
| 766 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 767 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
| 768 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
| 769 | 
 | 
|---|
| 770 |       buf_sz=tot_sz;
 | 
|---|
| 771 |       buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
| 772 |       if(!buf){
 | 
|---|
| 773 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
 | 
|---|
| 774 |         exit(1);
 | 
|---|
| 775 |       }
 | 
|---|
| 776 |     }
 | 
|---|
| 777 | #else
 | 
|---|
| 778 |       buf_sz=tot_sz;
 | 
|---|
| 779 |       buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
| 780 |       if(!buf){
 | 
|---|
| 781 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
 | 
|---|
| 782 |         exit(1);
 | 
|---|
| 783 |       }
 | 
|---|
| 784 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 785 | 
 | 
|---|
| 786 |     a=buf;
 | 
|---|
| 787 |     ipiv=(int *)(a+a_sz);
 | 
|---|
| 788 | 
 | 
|---|
| 789 |     /* store A (column major!) into a and B into x */
 | 
|---|
| 790 |           for(i=0; i<m; i++){
 | 
|---|
| 791 |                   for(j=0; j<m; j++)
 | 
|---|
| 792 |         a[i+j*m]=A[i*m+j];
 | 
|---|
| 793 | 
 | 
|---|
| 794 |       x[i]=B[i];
 | 
|---|
| 795 |     }
 | 
|---|
| 796 | 
 | 
|---|
| 797 |   /* LU decomposition for A */
 | 
|---|
| 798 |         GETRF((int *)&m, (int *)&m, a, (int *)&m, ipiv, (int *)&info);  
 | 
|---|
| 799 |         if(info!=0){
 | 
|---|
| 800 |                 if(info<0){
 | 
|---|
| 801 |       fprintf(stderr, RCAT(RCAT("argument %d of ", GETRF) " illegal in ", AX_EQ_B_LU) "()\n", -info);
 | 
|---|
| 802 |                         exit(1);
 | 
|---|
| 803 |                 }
 | 
|---|
| 804 |                 else{
 | 
|---|
| 805 |       fprintf(stderr, RCAT(RCAT("singular matrix A for ", GETRF) " in ", AX_EQ_B_LU) "()\n");
 | 
|---|
| 806 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 807 |       free(buf);
 | 
|---|
| 808 | #endif
 | 
|---|
| 809 | 
 | 
|---|
| 810 |                         return 0;
 | 
|---|
| 811 |                 }
 | 
|---|
| 812 |         }
 | 
|---|
| 813 | 
 | 
|---|
| 814 |   /* solve the system with the computed LU */
 | 
|---|
| 815 |   GETRS("N", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
 | 
|---|
| 816 |         if(info!=0){
 | 
|---|
| 817 |                 if(info<0){
 | 
|---|
| 818 |                         fprintf(stderr, RCAT(RCAT("argument %d of ", GETRS) " illegal in ", AX_EQ_B_LU) "()\n", -info);
 | 
|---|
| 819 |                         exit(1);
 | 
|---|
| 820 |                 }
 | 
|---|
| 821 |                 else{
 | 
|---|
| 822 |                         fprintf(stderr, RCAT(RCAT("unknown error for ", GETRS) " in ", AX_EQ_B_LU) "()\n");
 | 
|---|
| 823 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 824 |       free(buf);
 | 
|---|
| 825 | #endif
 | 
|---|
| 826 | 
 | 
|---|
| 827 |                         return 0;
 | 
|---|
| 828 |                 }
 | 
|---|
| 829 |         }
 | 
|---|
| 830 | 
 | 
|---|
| 831 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 832 |   free(buf);
 | 
|---|
| 833 | #endif
 | 
|---|
| 834 | 
 | 
|---|
| 835 |         return 1;
 | 
|---|
| 836 | }
 | 
|---|
| 837 | 
 | 
|---|
| 838 | /*
 | 
|---|
| 839 |  * This function returns the solution of Ax = b
 | 
|---|
| 840 |  *
 | 
|---|
| 841 |  * The function is based on SVD decomposition:
 | 
|---|
| 842 |  * If A=U D V^T with U, V orthogonal and D diagonal, the linear system becomes
 | 
|---|
| 843 |  * (U D V^T) x = b or x=V D^{-1} U^T b
 | 
|---|
| 844 |  * Note that V D^{-1} U^T is the pseudoinverse A^+
 | 
|---|
| 845 |  *
 | 
|---|
| 846 |  * A is mxm, b is mx1.
 | 
|---|
| 847 |  *
 | 
|---|
| 848 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
| 849 |  *
 | 
|---|
| 850 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
| 851 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
| 852 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
| 853 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
| 854 |  */
 | 
|---|
| 855 | int AX_EQ_B_SVD(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
| 856 | {
 | 
|---|
| 857 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
| 858 | __STATIC__ int buf_sz=0;
 | 
|---|
| 859 | static LM_REAL eps=LM_CNST(-1.0);
 | 
|---|
| 860 | 
 | 
|---|
| 861 | register int i, j;
 | 
|---|
| 862 | LM_REAL *a, *u, *s, *vt, *work;
 | 
|---|
| 863 | int a_sz, u_sz, s_sz, vt_sz, tot_sz;
 | 
|---|
| 864 | LM_REAL thresh, one_over_denom;
 | 
|---|
| 865 | register LM_REAL sum;
 | 
|---|
| 866 | int info, rank, worksz, *iwork, iworksz;
 | 
|---|
| 867 |    
 | 
|---|
| 868 |     if(!A)
 | 
|---|
| 869 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 870 |     {
 | 
|---|
| 871 |       if(buf) free(buf);
 | 
|---|
| 872 |       buf=NULL;
 | 
|---|
| 873 |       buf_sz=0;
 | 
|---|
| 874 | 
 | 
|---|
| 875 |       return 1;
 | 
|---|
| 876 |     }
 | 
|---|
| 877 | #else
 | 
|---|
| 878 |       return 1; /* NOP */
 | 
|---|
| 879 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 880 |    
 | 
|---|
| 881 |   /* calculate required memory size */
 | 
|---|
| 882 | #if 1 /* use optimal size */
 | 
|---|
| 883 |   worksz=-1; // workspace query. Keep in mind that GESDD requires more memory than GESVD
 | 
|---|
| 884 |   /* note that optimal work size is returned in thresh */
 | 
|---|
| 885 |   GESVD("A", "A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, &info);
 | 
|---|
| 886 |   //GESDD("A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, NULL, &info);
 | 
|---|
| 887 |   worksz=(int)thresh;
 | 
|---|
| 888 | #else /* use minimum size */
 | 
|---|
| 889 |   worksz=5*m; // min worksize for GESVD
 | 
|---|
| 890 |   //worksz=m*(7*m+4); // min worksize for GESDD
 | 
|---|
| 891 | #endif
 | 
|---|
| 892 |   iworksz=8*m;
 | 
|---|
| 893 |   a_sz=m*m;
 | 
|---|
| 894 |   u_sz=m*m; s_sz=m; vt_sz=m*m;
 | 
|---|
| 895 | 
 | 
|---|
| 896 |   tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
| 897 | 
 | 
|---|
| 898 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 899 |   if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
| 900 |     if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
| 901 | 
 | 
|---|
| 902 |     buf_sz=tot_sz;
 | 
|---|
| 903 |     buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
| 904 |     if(!buf){
 | 
|---|
| 905 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
 | 
|---|
| 906 |       exit(1);
 | 
|---|
| 907 |     }
 | 
|---|
| 908 |   }
 | 
|---|
| 909 | #else
 | 
|---|
| 910 |     buf_sz=tot_sz;
 | 
|---|
| 911 |     buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
| 912 |     if(!buf){
 | 
|---|
| 913 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
 | 
|---|
| 914 |       exit(1);
 | 
|---|
| 915 |     }
 | 
|---|
| 916 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 917 | 
 | 
|---|
| 918 |   a=buf;
 | 
|---|
| 919 |   u=a+a_sz;
 | 
|---|
| 920 |   s=u+u_sz;
 | 
|---|
| 921 |   vt=s+s_sz;
 | 
|---|
| 922 |   work=vt+vt_sz;
 | 
|---|
| 923 |   iwork=(int *)(work+worksz);
 | 
|---|
| 924 | 
 | 
|---|
| 925 |   /* store A (column major!) into a */
 | 
|---|
| 926 |   for(i=0; i<m; i++)
 | 
|---|
| 927 |     for(j=0; j<m; j++)
 | 
|---|
| 928 |       a[i+j*m]=A[i*m+j];
 | 
|---|
| 929 | 
 | 
|---|
| 930 |   /* SVD decomposition of A */
 | 
|---|
| 931 |   GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info);
 | 
|---|
| 932 |   //GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info);
 | 
|---|
| 933 | 
 | 
|---|
| 934 |   /* error treatment */
 | 
|---|
| 935 |   if(info!=0){
 | 
|---|
| 936 |     if(info<0){
 | 
|---|
| 937 |       fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", AX_EQ_B_SVD) "()\n", -info);
 | 
|---|
| 938 |       exit(1);
 | 
|---|
| 939 |     }
 | 
|---|
| 940 |     else{
 | 
|---|
| 941 |       fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", AX_EQ_B_SVD) "() [info=%d]\n", info);
 | 
|---|
| 942 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 943 |       free(buf);
 | 
|---|
| 944 | #endif
 | 
|---|
| 945 | 
 | 
|---|
| 946 |       return 0;
 | 
|---|
| 947 |     }
 | 
|---|
| 948 |   }
 | 
|---|
| 949 | 
 | 
|---|
| 950 |   if(eps<0.0){
 | 
|---|
| 951 |     LM_REAL aux;
 | 
|---|
| 952 | 
 | 
|---|
| 953 |     /* compute machine epsilon */
 | 
|---|
| 954 |     for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
 | 
|---|
| 955 |                                           ;
 | 
|---|
| 956 |     eps*=LM_CNST(2.0);
 | 
|---|
| 957 |   }
 | 
|---|
| 958 | 
 | 
|---|
| 959 |   /* compute the pseudoinverse in a */
 | 
|---|
| 960 |         for(i=0; i<a_sz; i++) a[i]=0.0; /* initialize to zero */
 | 
|---|
| 961 |   for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){
 | 
|---|
| 962 |     one_over_denom=LM_CNST(1.0)/s[rank];
 | 
|---|
| 963 | 
 | 
|---|
| 964 |     for(j=0; j<m; j++)
 | 
|---|
| 965 |       for(i=0; i<m; i++)
 | 
|---|
| 966 |         a[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom;
 | 
|---|
| 967 |   }
 | 
|---|
| 968 | 
 | 
|---|
| 969 |         /* compute A^+ b in x */
 | 
|---|
| 970 |         for(i=0; i<m; i++){
 | 
|---|
| 971 |           for(j=0, sum=0.0; j<m; j++)
 | 
|---|
| 972 |       sum+=a[i*m+j]*B[j];
 | 
|---|
| 973 |     x[i]=sum;
 | 
|---|
| 974 |   }
 | 
|---|
| 975 | 
 | 
|---|
| 976 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 977 |   free(buf);
 | 
|---|
| 978 | #endif
 | 
|---|
| 979 | 
 | 
|---|
| 980 |         return 1;
 | 
|---|
| 981 | }
 | 
|---|
| 982 | 
 | 
|---|
| 983 | /*
 | 
|---|
| 984 |  * This function returns the solution of Ax = b for a real symmetric matrix A
 | 
|---|
| 985 |  *
 | 
|---|
| 986 |  * The function is based on LDLT factorization with the pivoting
 | 
|---|
| 987 |  * strategy of Bunch and Kaufman:
 | 
|---|
| 988 |  * A is factored as L*D*L^T where L is lower triangular and
 | 
|---|
| 989 |  * D symmetric and block diagonal (aka spectral decomposition,
 | 
|---|
| 990 |  * Banachiewicz factorization, modified Cholesky factorization)
 | 
|---|
| 991 |  *
 | 
|---|
| 992 |  * A is mxm, b is mx1.
 | 
|---|
| 993 |  *
 | 
|---|
| 994 |  * The function returns 0 in case of error, 1 if successfull
 | 
|---|
| 995 |  *
 | 
|---|
| 996 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
| 997 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
| 998 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
| 999 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
| 1000 |  */
 | 
|---|
| 1001 | int AX_EQ_B_BK(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
| 1002 | {
 | 
|---|
| 1003 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
| 1004 | __STATIC__ int buf_sz=0, nb=0;
 | 
|---|
| 1005 | 
 | 
|---|
| 1006 | LM_REAL *a, *work;
 | 
|---|
| 1007 | int a_sz, ipiv_sz, work_sz, tot_sz;
 | 
|---|
| 1008 | int info, *ipiv, nrhs=1;
 | 
|---|
| 1009 |    
 | 
|---|
| 1010 |   if(!A)
 | 
|---|
| 1011 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 1012 |   {
 | 
|---|
| 1013 |     if(buf) free(buf);
 | 
|---|
| 1014 |     buf=NULL;
 | 
|---|
| 1015 |     buf_sz=0;
 | 
|---|
| 1016 | 
 | 
|---|
| 1017 |     return 1;
 | 
|---|
| 1018 |   }
 | 
|---|
| 1019 | #else
 | 
|---|
| 1020 |   return 1; /* NOP */
 | 
|---|
| 1021 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 1022 | 
 | 
|---|
| 1023 |   /* calculate required memory size */
 | 
|---|
| 1024 |   ipiv_sz=m;
 | 
|---|
| 1025 |   a_sz=m*m;
 | 
|---|
| 1026 |   if(!nb){
 | 
|---|
| 1027 |     LM_REAL tmp;
 | 
|---|
| 1028 | 
 | 
|---|
| 1029 |     work_sz=-1; // workspace query; optimal size is returned in tmp
 | 
|---|
| 1030 |     SYTRF("L", (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&work_sz, (int *)&info);
 | 
|---|
| 1031 |     nb=((int)tmp)/m; // optimal worksize is m*nb
 | 
|---|
| 1032 |   }
 | 
|---|
| 1033 |   work_sz=(nb!=-1)? nb*m : 1;
 | 
|---|
| 1034 |   tot_sz=(a_sz + work_sz)*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
| 1035 | 
 | 
|---|
| 1036 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 1037 |   if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
| 1038 |     if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
| 1039 | 
 | 
|---|
| 1040 |     buf_sz=tot_sz;
 | 
|---|
| 1041 |     buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
| 1042 |     if(!buf){
 | 
|---|
| 1043 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
 | 
|---|
| 1044 |       exit(1);
 | 
|---|
| 1045 |     }
 | 
|---|
| 1046 |   }
 | 
|---|
| 1047 | #else
 | 
|---|
| 1048 |   buf_sz=tot_sz;
 | 
|---|
| 1049 |   buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
| 1050 |   if(!buf){
 | 
|---|
| 1051 |     fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
 | 
|---|
| 1052 |     exit(1);
 | 
|---|
| 1053 |   }
 | 
|---|
| 1054 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 1055 | 
 | 
|---|
| 1056 |   a=buf;
 | 
|---|
| 1057 |   work=a+a_sz;
 | 
|---|
| 1058 |   ipiv=(int *)(work+work_sz);
 | 
|---|
| 1059 | 
 | 
|---|
| 1060 |   /* store A into a and B into x; A is assumed to be symmetric, hence
 | 
|---|
| 1061 |    * the column and row major order representations are the same
 | 
|---|
| 1062 |    */
 | 
|---|
| 1063 |   memcpy(a, A, a_sz*sizeof(LM_REAL));
 | 
|---|
| 1064 |   memcpy(x, B, m*sizeof(LM_REAL));
 | 
|---|
| 1065 | 
 | 
|---|
| 1066 |   /* LDLt factorization for A */
 | 
|---|
| 1067 |         SYTRF("L", (int *)&m, a, (int *)&m, ipiv, work, (int *)&work_sz, (int *)&info);
 | 
|---|
| 1068 |         if(info!=0){
 | 
|---|
| 1069 |                 if(info<0){
 | 
|---|
| 1070 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRF) " in ", AX_EQ_B_BK) "()\n", -info);
 | 
|---|
| 1071 |                         exit(1);
 | 
|---|
| 1072 |                 }
 | 
|---|
| 1073 |                 else{
 | 
|---|
| 1074 |       fprintf(stderr, RCAT(RCAT("LAPACK error: singular block diagonal matrix D for", SYTRF) " in ", AX_EQ_B_BK)"() [D(%d, %d) is zero]\n", info, info);
 | 
|---|
| 1075 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 1076 |       free(buf);
 | 
|---|
| 1077 | #endif
 | 
|---|
| 1078 | 
 | 
|---|
| 1079 |                         return 0;
 | 
|---|
| 1080 |                 }
 | 
|---|
| 1081 |         }
 | 
|---|
| 1082 | 
 | 
|---|
| 1083 |   /* solve the system with the computed factorization */
 | 
|---|
| 1084 |   SYTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
 | 
|---|
| 1085 |   if(info<0){
 | 
|---|
| 1086 |     fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRS) " in ", AX_EQ_B_BK) "()\n", -info);
 | 
|---|
| 1087 |     exit(1);
 | 
|---|
| 1088 |         }
 | 
|---|
| 1089 | 
 | 
|---|
| 1090 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 1091 |   free(buf);
 | 
|---|
| 1092 | #endif
 | 
|---|
| 1093 | 
 | 
|---|
| 1094 |         return 1;
 | 
|---|
| 1095 | }
 | 
|---|
| 1096 | 
 | 
|---|
| 1097 | /* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
 | 
|---|
| 1098 | #undef AX_EQ_B_QR
 | 
|---|
| 1099 | #undef AX_EQ_B_QRLS
 | 
|---|
| 1100 | #undef AX_EQ_B_CHOL
 | 
|---|
| 1101 | #undef AX_EQ_B_LU
 | 
|---|
| 1102 | #undef AX_EQ_B_SVD
 | 
|---|
| 1103 | #undef AX_EQ_B_BK
 | 
|---|
| 1104 | #undef AX_EQ_B_PLASMA_CHOL
 | 
|---|
| 1105 | 
 | 
|---|
| 1106 | #undef GEQRF
 | 
|---|
| 1107 | #undef ORGQR
 | 
|---|
| 1108 | #undef TRTRS
 | 
|---|
| 1109 | #undef POTF2
 | 
|---|
| 1110 | #undef POTRF
 | 
|---|
| 1111 | #undef POTRS
 | 
|---|
| 1112 | #undef GETRF
 | 
|---|
| 1113 | #undef GETRS
 | 
|---|
| 1114 | #undef GESVD
 | 
|---|
| 1115 | #undef GESDD
 | 
|---|
| 1116 | #undef SYTRF
 | 
|---|
| 1117 | #undef SYTRS
 | 
|---|
| 1118 | #undef PLASMA_POSV
 | 
|---|
| 1119 | 
 | 
|---|
| 1120 | #else // no LAPACK
 | 
|---|
| 1121 | 
 | 
|---|
| 1122 | /* precision-specific definitions */
 | 
|---|
| 1123 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
 | 
|---|
| 1124 | 
 | 
|---|
| 1125 | /*
 | 
|---|
| 1126 |  * This function returns the solution of Ax = b
 | 
|---|
| 1127 |  *
 | 
|---|
| 1128 |  * The function employs LU decomposition followed by forward/back substitution (see 
 | 
|---|
| 1129 |  * also the LAPACK-based LU solver above)
 | 
|---|
| 1130 |  *
 | 
|---|
| 1131 |  * A is mxm, b is mx1
 | 
|---|
| 1132 |  *
 | 
|---|
| 1133 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
| 1134 |  *
 | 
|---|
| 1135 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
| 1136 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
| 1137 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
| 1138 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
| 1139 |  */
 | 
|---|
| 1140 | int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
| 1141 | {
 | 
|---|
| 1142 | __STATIC__ void *buf=NULL;
 | 
|---|
| 1143 | __STATIC__ int buf_sz=0;
 | 
|---|
| 1144 | 
 | 
|---|
| 1145 | register int i, j, k;
 | 
|---|
| 1146 | int *idx, maxi=-1, idx_sz, a_sz, work_sz, tot_sz;
 | 
|---|
| 1147 | LM_REAL *a, *work, max, sum, tmp;
 | 
|---|
| 1148 | 
 | 
|---|
| 1149 |     if(!A)
 | 
|---|
| 1150 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 1151 |     {
 | 
|---|
| 1152 |       if(buf) free(buf);
 | 
|---|
| 1153 |       buf=NULL;
 | 
|---|
| 1154 |       buf_sz=0;
 | 
|---|
| 1155 | 
 | 
|---|
| 1156 |       return 1;
 | 
|---|
| 1157 |     }
 | 
|---|
| 1158 | #else
 | 
|---|
| 1159 |     return 1; /* NOP */
 | 
|---|
| 1160 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 1161 |    
 | 
|---|
| 1162 |   /* calculate required memory size */
 | 
|---|
| 1163 |   idx_sz=m;
 | 
|---|
| 1164 |   a_sz=m*m;
 | 
|---|
| 1165 |   work_sz=m;
 | 
|---|
| 1166 |   tot_sz=(a_sz+work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
| 1167 | 
 | 
|---|
| 1168 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 1169 |   if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
| 1170 |     if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
| 1171 | 
 | 
|---|
| 1172 |     buf_sz=tot_sz;
 | 
|---|
| 1173 |     buf=(void *)malloc(tot_sz);
 | 
|---|
| 1174 |     if(!buf){
 | 
|---|
| 1175 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
 | 
|---|
| 1176 |       exit(1);
 | 
|---|
| 1177 |     }
 | 
|---|
| 1178 |   }
 | 
|---|
| 1179 | #else
 | 
|---|
| 1180 |     buf_sz=tot_sz;
 | 
|---|
| 1181 |     buf=(void *)malloc(tot_sz);
 | 
|---|
| 1182 |     if(!buf){
 | 
|---|
| 1183 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
 | 
|---|
| 1184 |       exit(1);
 | 
|---|
| 1185 |     }
 | 
|---|
| 1186 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
| 1187 | 
 | 
|---|
| 1188 |   a=buf;
 | 
|---|
| 1189 |   work=a+a_sz;
 | 
|---|
| 1190 |   idx=(int *)(work+work_sz);
 | 
|---|
| 1191 | 
 | 
|---|
| 1192 |   /* avoid destroying A, B by copying them to a, x resp. */
 | 
|---|
| 1193 |   memcpy(a, A, a_sz*sizeof(LM_REAL));
 | 
|---|
| 1194 |   memcpy(x, B, m*sizeof(LM_REAL));
 | 
|---|
| 1195 | 
 | 
|---|
| 1196 |   /* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */
 | 
|---|
| 1197 |         for(i=0; i<m; ++i){
 | 
|---|
| 1198 |                 max=0.0;
 | 
|---|
| 1199 |                 for(j=0; j<m; ++j)
 | 
|---|
| 1200 |                         if((tmp=FABS(a[i*m+j]))>max)
 | 
|---|
| 1201 |         max=tmp;
 | 
|---|
| 1202 |                   if(max==0.0){
 | 
|---|
| 1203 |         fprintf(stderr, RCAT("Singular matrix A in ", AX_EQ_B_LU) "()!\n");
 | 
|---|
| 1204 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 1205 |         free(buf);
 | 
|---|
| 1206 | #endif
 | 
|---|
| 1207 | 
 | 
|---|
| 1208 |         return 0;
 | 
|---|
| 1209 |       }
 | 
|---|
| 1210 |                   work[i]=LM_CNST(1.0)/max;
 | 
|---|
| 1211 |         }
 | 
|---|
| 1212 | 
 | 
|---|
| 1213 |         for(j=0; j<m; ++j){
 | 
|---|
| 1214 |                 for(i=0; i<j; ++i){
 | 
|---|
| 1215 |                         sum=a[i*m+j];
 | 
|---|
| 1216 |                         for(k=0; k<i; ++k)
 | 
|---|
| 1217 |         sum-=a[i*m+k]*a[k*m+j];
 | 
|---|
| 1218 |                         a[i*m+j]=sum;
 | 
|---|
| 1219 |                 }
 | 
|---|
| 1220 |                 max=0.0;
 | 
|---|
| 1221 |                 for(i=j; i<m; ++i){
 | 
|---|
| 1222 |                         sum=a[i*m+j];
 | 
|---|
| 1223 |                         for(k=0; k<j; ++k)
 | 
|---|
| 1224 |         sum-=a[i*m+k]*a[k*m+j];
 | 
|---|
| 1225 |                         a[i*m+j]=sum;
 | 
|---|
| 1226 |                         if((tmp=work[i]*FABS(sum))>=max){
 | 
|---|
| 1227 |                                 max=tmp;
 | 
|---|
| 1228 |                                 maxi=i;
 | 
|---|
| 1229 |                         }
 | 
|---|
| 1230 |                 }
 | 
|---|
| 1231 |                 if(j!=maxi){
 | 
|---|
| 1232 |                         for(k=0; k<m; ++k){
 | 
|---|
| 1233 |                                 tmp=a[maxi*m+k];
 | 
|---|
| 1234 |                                 a[maxi*m+k]=a[j*m+k];
 | 
|---|
| 1235 |                                 a[j*m+k]=tmp;
 | 
|---|
| 1236 |                         }
 | 
|---|
| 1237 |                         work[maxi]=work[j];
 | 
|---|
| 1238 |                 }
 | 
|---|
| 1239 |                 idx[j]=maxi;
 | 
|---|
| 1240 |                 if(a[j*m+j]==0.0)
 | 
|---|
| 1241 |       a[j*m+j]=LM_REAL_EPSILON;
 | 
|---|
| 1242 |                 if(j!=m-1){
 | 
|---|
| 1243 |                         tmp=LM_CNST(1.0)/(a[j*m+j]);
 | 
|---|
| 1244 |                         for(i=j+1; i<m; ++i)
 | 
|---|
| 1245 |         a[i*m+j]*=tmp;
 | 
|---|
| 1246 |                 }
 | 
|---|
| 1247 |         }
 | 
|---|
| 1248 | 
 | 
|---|
| 1249 |   /* The decomposition has now replaced a. Solve the linear system using
 | 
|---|
| 1250 |    * forward and back substitution
 | 
|---|
| 1251 |    */
 | 
|---|
| 1252 |         for(i=k=0; i<m; ++i){
 | 
|---|
| 1253 |                 j=idx[i];
 | 
|---|
| 1254 |                 sum=x[j];
 | 
|---|
| 1255 |                 x[j]=x[i];
 | 
|---|
| 1256 |                 if(k!=0)
 | 
|---|
| 1257 |                         for(j=k-1; j<i; ++j)
 | 
|---|
| 1258 |         sum-=a[i*m+j]*x[j];
 | 
|---|
| 1259 |                 else
 | 
|---|
| 1260 |       if(sum!=0.0)
 | 
|---|
| 1261 |                           k=i+1;
 | 
|---|
| 1262 |                 x[i]=sum;
 | 
|---|
| 1263 |         }
 | 
|---|
| 1264 | 
 | 
|---|
| 1265 |         for(i=m-1; i>=0; --i){
 | 
|---|
| 1266 |                 sum=x[i];
 | 
|---|
| 1267 |                 for(j=i+1; j<m; ++j)
 | 
|---|
| 1268 |       sum-=a[i*m+j]*x[j];
 | 
|---|
| 1269 |                 x[i]=sum/a[i*m+i];
 | 
|---|
| 1270 |         }
 | 
|---|
| 1271 | 
 | 
|---|
| 1272 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 1273 |   free(buf);
 | 
|---|
| 1274 | #endif
 | 
|---|
| 1275 | 
 | 
|---|
| 1276 |   return 1;
 | 
|---|
| 1277 | }
 | 
|---|
| 1278 | 
 | 
|---|
| 1279 | /* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
 | 
|---|
| 1280 | #undef AX_EQ_B_LU
 | 
|---|
| 1281 | 
 | 
|---|
| 1282 | #endif /* HAVE_LAPACK */
 | 
|---|